AMS256 Homework 4

1. In vector form, our model can be written as $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ with $\boldsymbol{y}=(17,20,15,20,12,11,14,6,17,9,4,6,19)^{T}, \boldsymbol{\beta}=\left(\mu, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{T}$, and

$$
\underset{13 \times 8}{\boldsymbol{X}}=\left[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right],
$$

with rank $r=6$.
The hypothesis $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}$ can be re-written as the following two hypotheses: $\beta_{1}-\beta_{2}=$ 0 and $\beta_{1}-\beta_{3}=0$ represented as $\boldsymbol{\lambda}_{1}^{T} \boldsymbol{\beta}=0$ and $\boldsymbol{\lambda}_{2}^{T} \boldsymbol{\beta}=0$ where $\boldsymbol{\lambda}_{1}=(0,0,0,0,0,1,-1,0)^{T}, \boldsymbol{\lambda}_{2}=$ $(0,0,0,0,0,1,0,-1)^{T}$. This hypothesis is testable if $\boldsymbol{\lambda}_{1}^{T} \boldsymbol{\beta}$ and $\boldsymbol{\lambda}_{2}^{T} \boldsymbol{\beta}$ are estimable and $\boldsymbol{\lambda}_{1}$ and $\boldsymbol{\lambda}_{2}$ are linearly independent. Note that $\boldsymbol{\lambda}_{1}^{T}=\boldsymbol{a}_{1}^{T} \boldsymbol{X}$ where $\boldsymbol{a}_{1}=(1,0,-1,0,0,0,0,0,0,0,0,0,0)^{T}$ and $\boldsymbol{\lambda}_{2}^{T}=\boldsymbol{a}_{2}^{T} \boldsymbol{X}$ where $\boldsymbol{a}_{2}=(1,0,0,-1,0,0,0,0,0,0,0,0,0)^{T}$, meaning we get $\boldsymbol{\lambda}_{1}$ by subtracting row 3 from row 1 in \boldsymbol{X} and we get $\boldsymbol{\lambda}_{2}$ by subtracting row 4 from row 1 in \boldsymbol{X}. Hence, these are estimable functions and the hypothesis is testable.
Now let $\boldsymbol{\Lambda}=\left[\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right]$. We write H_{0} as $\boldsymbol{\Lambda}^{T} \boldsymbol{\beta}=\mathbf{0}$. If this hypothesis is true, then we have

$$
\frac{Q}{\sigma^{2}}=\frac{\left(\boldsymbol{\Lambda}^{T} \hat{\boldsymbol{\beta}}-\mathbf{0}\right)^{T}\left(\boldsymbol{\Lambda}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{\Lambda}\right)^{-1}\left(\boldsymbol{\Lambda}^{T} \hat{\boldsymbol{\beta}}-\mathbf{0}\right)}{\sigma^{2}} \sim \chi_{s}^{2}
$$

where $s=\operatorname{rank}(\boldsymbol{\Lambda})=2, \hat{\boldsymbol{\beta}}$ is any solution to the normal equations and $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$is any generalized inverse of $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)$. Since Q is independent of $S S E=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})$, we also have (if H_{0} is true)

$$
F=\frac{Q / s}{S S E /(13-r)} \sim F(s, 13-r)
$$

In this example, $Q=145.65, S S E=70.51$, and $F=7.229$. This exceeds the critical value $F_{0.05}(2,7)=4.256$, so we reject H_{0} at the .05 level and conclude that at least one β_{j} is not equal to the others.
We can also test this hypothesis in R, although we have to account for different parameterization. By default in R, the model is written as

$$
y_{i, j, k}=\gamma+a_{i}+b_{j}+\epsilon_{i, j, k}, \quad i=1,2,3,4, \quad j=1,2,3
$$

where $a_{1}=b_{1}=0$, so that

$$
\begin{aligned}
\gamma & =\mu+\alpha_{1}+\beta_{1}=\mathrm{E}\left(y_{1,1,1}\right), \\
a_{2} & =\left(\mu+\alpha_{2}+\beta_{1}\right)-\left(\mu+\alpha_{1}+\beta_{1}\right), \\
& =\alpha_{2}-\alpha_{1}=\mathrm{E}\left(y_{2,1,1}-y_{1,1,1}\right), \\
a_{3} & =\alpha_{3}-\alpha_{1}=\mathrm{E}\left(y_{3,1,1}-y_{1,1,1}\right), \\
a_{4} & =\alpha_{4}-\alpha_{1}=\mathrm{E}\left(y_{4,1,1}-y_{1,1,1}\right), \\
b_{2} & =\left(\mu+\alpha_{1}+\beta_{2}\right)-\left(\mu+\alpha_{1}+\beta_{1}\right), \\
& =\beta_{2}-\beta_{1}=\mathrm{E}\left(y_{1,2,1}-y_{1,1,1}\right), \\
b_{3} & =\beta_{3}-\beta_{1}=\mathrm{E}\left(y_{1,3,1}-y_{1,1,1}\right) .
\end{aligned}
$$

With this parameterization, the hypothesis becomes $H_{0}: b_{2}=b_{3}=0$ which can be expressed with $b_{2}=0$ and $b_{3}-b_{2}=0$. The following code demonstrates setting up and testing this hypothesis in three ways.

```
y <- c(17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)
A <- c(rep(1, 4), rep(2, 3), rep(3, 2), rep(4,4))
B <- c(1,1,2,3, 1,3,3, 1,3, 1,2,2,3)
dat <- data.frame(y=y, A=factor(A), B=factor(B))
mod <- lm(y ~ A + B, data=dat)
model.matrix(mod)
summary(mod)
anova(mod) # note that this hypothesis is the same as
    # factor B being significant
```

library (multcomp)
test0 <- glht(mod, linfct=c("B2=0", "B3-B2=0"))
summary(test0, test=Ftest())
(Lam <- matrix(c(0, 0, 0, 0, 1, 0,
$0,0,0,0,1,-1)$,
nrow=2, byrow=TRUE))
test1 <- glht(mod, linfct=Lam, rhs=c $(0,0))$
summary(test1, test=Ftest()) \# gives the same answer
> General Linear Hypotheses
$>$
> Linear Hypotheses:
> Estimate
$>$ B2 == $0 \quad-4.629$
> B3 - B2 == 0 9.827
$>$
> Global Test:

```
> lllll
```

2. We can write this model as $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ with $\boldsymbol{\beta}=\left(\alpha_{1}, \alpha_{2}\right)^{T}$,

$$
\underset{3 \times 2}{\boldsymbol{X}}=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
1 & 2
\end{array}\right], \boldsymbol{X}^{T} \boldsymbol{X}=\left[\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right], \text { and }\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\left[\begin{array}{cc}
1 / 6 & 0 \\
0 & 1 / 5
\end{array}\right] \text {. }
$$

We can also write $H_{0}: \alpha_{1}-\alpha_{2}=0$ which is $\boldsymbol{\lambda}^{T} \boldsymbol{\beta}=0$ with $\boldsymbol{\lambda}=(1,-1)^{T}=\boldsymbol{X}^{T} \boldsymbol{a}$ and $\boldsymbol{a}=(-1,1,0)^{T}$, so H_{0} is testable.
Now,

$$
\begin{gathered}
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\left[\begin{array}{cc}
1 / 6 & 0 \\
0 & 1 / 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{6}\left(y_{1}+2 y_{2}+y_{3}\right) \\
\frac{1}{5}\left(-y_{2}+2 y_{3}\right)
\end{array}\right], \\
\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 / 6 & 0 \\
0 & 1 / 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{3} & \frac{13}{15} & \frac{-1}{15} \\
\frac{1}{6} & \frac{-1}{15} & \frac{29}{30}
\end{array}\right], \\
\boldsymbol{I}-\boldsymbol{P}=\left[\begin{array}{ccc}
\frac{-5}{6} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{3} & \frac{-2}{15} & \frac{-1}{15} \\
\frac{1}{6} & \frac{-1}{15} & \frac{-1}{30}
\end{array}\right], \\
\boldsymbol{\lambda}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{\lambda}=[1 \quad-1]\left[\begin{array}{ccc}
1 / 6 & 0 \\
0 & 1 / 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{6}+\frac{1}{5}=\frac{11}{30}, \\
\boldsymbol{\lambda}^{T} \hat{\boldsymbol{\beta}}=\frac{1}{6}\left(y_{1}+2 y_{2}+y_{3}\right)-\frac{1}{5}\left(-y_{2}+2 y_{3}\right), \\
Q=\left(\boldsymbol{\lambda}^{T} \hat{\boldsymbol{\beta}}-0\right)^{T}\left(\boldsymbol{\lambda}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{\lambda}\right)^{-1}\left(\boldsymbol{\lambda}^{T} \hat{\boldsymbol{\beta}}-0\right)=\frac{30}{11}\left(\boldsymbol{\lambda}^{T} \hat{\boldsymbol{\beta}}\right)^{2} \\
=\frac{1}{330}\left(25 y_{1}^{2}+256 y_{2}^{2}+49 y_{3}^{2}+160 y_{1} y_{2}-170 y_{1} y_{3}-224 y_{2} y_{3}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
S S E & =\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}=\frac{1}{30}\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{ccc}
-25 & 10 & 5 \\
10 & -4 & -2 \\
5 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
& =\frac{1}{30}\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{ccc}
-25 & 20 & 10 \\
0 & -4 & -4 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
& =\frac{1}{30}\left(-25 y_{1}^{2}-4 y_{2}^{2}-2 y_{3}^{2}+20 y_{1} y_{2}+10 y_{1} y_{3}-4 y_{2} y_{3}\right) .
\end{aligned}
$$

Under H_{0} :

$$
F=\frac{Q / 1}{S S E / 1} \sim F(1,3-2)
$$

which we can use to test the hypothesis.
3. We can write the model as $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $\boldsymbol{\beta}=\left(\beta_{1,0}, \beta_{1,1}, \beta_{2,0}, \beta_{2,1}\right)^{T}$ and

$$
\underset{(n+m) \times 4}{\boldsymbol{X}}=\left[\begin{array}{cc}
\underset{n \times 2}{\boldsymbol{X}_{1}} & \underset{n \times 2}{\boldsymbol{0}} \\
\underset{m \times 2}{\mathbf{0}} & \underset{m \times 2}{\boldsymbol{X}_{2}}
\end{array}\right],
$$

where the first columns of \boldsymbol{X}_{1} and \boldsymbol{X}_{2} contain ones and the second columns contain x values. Now

$$
\boldsymbol{X}_{4 \times 4}^{T} \boldsymbol{X}=\left[\begin{array}{cc}
\boldsymbol{X}_{1}^{T} & \mathbf{0} \\
2 \times n & 2 \times m \\
\mathbf{0} & \boldsymbol{X}_{2}^{T} \\
2 \times n & 2 \times m
\end{array}\right]\left[\begin{array}{cc}
\underset{n \times 2}{\boldsymbol{X}_{1}} & \underset{n \times 2}{\mathbf{0}} \\
\underset{m \times 2}{\mathbf{0}} & \underset{m \times 2}{\boldsymbol{X}_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1} & \underset{2 \times 2}{\mathbf{0}} \\
\underset{2 \times 2}{\mathbf{0}} & \boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2} \\
2 \times 2
\end{array}\right],
$$

and

$$
\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\left[\begin{array}{cc}
\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1}
\end{array}\right]
$$

so that

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{\mathrm{MLE}} & =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \\
& =\left[\begin{array}{cc}
\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{X}_{1}^{T} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{X}_{2}^{T}
\end{array}\right] \boldsymbol{y} \\
& =\left[\begin{array}{cc}
\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{T} & \mathbf{0} \\
\mathbf{0} & \left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{X}_{2}^{T}
\end{array}\right] \boldsymbol{y} \\
& =\left[\begin{array}{cc}
\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{T} \boldsymbol{y}_{1} \\
\left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{X}_{2}^{T} \boldsymbol{y}_{2}
\end{array}\right],
\end{aligned}
$$

where \boldsymbol{y}_{1} contains the first n values of \boldsymbol{y} and \boldsymbol{y}_{2} contains the last m. These are simple linear regressions, so if we denote the first $n(x, y)$ pairs as $\left(x_{1, i}, y_{1, i}\right)$ for $i=1, \ldots, n$ and the last m as $\left(x_{2, j}, y_{2, j}\right)$ for $j=1, \ldots, m$, then we can write the MLEs as

$$
\hat{\beta}_{1,1}=\frac{\sum_{i=1}^{n} x_{1, i} y_{1, i}-n \bar{x}_{1} \bar{y}_{1}}{\sum_{i=1}^{n} x_{1, i}^{2}-n \bar{x}_{1}}, \hat{\beta}_{1,0}=\bar{y}_{1}-\hat{\beta}_{1,1} \bar{x}_{1}
$$

and

$$
\hat{\beta}_{2,1}=\frac{\sum_{j=1}^{m} x_{2, j} y_{2, j}-m \bar{x}_{2} \bar{y}_{2}}{\sum_{j=1}^{m} x_{2, j}^{2}-m \bar{x}_{2}}, \hat{\beta}_{2,0}=\bar{y}_{2}-\hat{\beta}_{2,1} \bar{x}_{2} .
$$

Also

$$
\hat{\sigma}_{\mathrm{MLE}}^{2}=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}) /(n+m)
$$

As for γ, we know it solves $\beta_{1,0}+\beta_{1,1} \gamma=\beta_{2,0}+\beta_{2,1} \gamma$, so

$$
\gamma=\frac{\beta_{1,0}-\beta_{2,0}}{\beta_{2,1}-\beta_{1,1}}
$$

By the invariance property of MLEs, we have

$$
\hat{\gamma}_{\mathrm{MLE}}=\frac{\hat{\beta}_{1,0}-\hat{\beta}_{2,0}}{\hat{\beta}_{2,1}-\hat{\beta}_{1,1}} .
$$

Now we find the confidence interval of γ (as you will see, this is challenging!). Let $\eta_{1}\left(x_{0}\right)=$ $\beta_{1,0}+\beta_{1,1} x_{0}$ and $\eta_{2}\left(x_{0}\right)=\beta_{2,0}+\beta_{2,1} x_{0}$ for any x_{0}. We know $\eta_{1}(\gamma)=\eta_{2}(\gamma)$ for γ. Their MLE (LSE) becomes

$$
\hat{\eta}_{1}\left(x_{0}\right)=\hat{\beta}_{1,0}+\hat{\beta}_{1,1} x_{0}, \quad \hat{\eta}_{2}\left(x_{0}\right)=\hat{\beta}_{2,0}+\hat{\beta}_{2,1} x_{0} .
$$

$\hat{\eta}_{1}\left(x_{0}\right)$ and $\hat{\eta}_{2}\left(x_{0}\right)$ are independent and follow normal distributions. So, the distribution of $\hat{\eta}_{1}\left(x_{0}\right)-\hat{\eta}_{2}\left(x_{0}\right)$ also follows a normal distribution whose mean and variance are

$$
\begin{aligned}
\mathrm{E}\left(\hat{\eta}_{1}\left(x_{0}\right)-\hat{\eta}_{2}\left(x_{0}\right)\right) & =\beta_{1,0}+\beta_{1,1} x_{0}-\beta_{2,0}-\beta_{2,1} x_{0} \\
\operatorname{Var}\left(\hat{\eta}_{1}\left(x_{0}\right)-\hat{\eta}_{2}\left(x_{0}\right)\right) & =\operatorname{Var}\left(\hat{\eta}_{1}\left(x_{0}\right)\right)+\operatorname{Var}\left(\hat{\eta}_{2}\left(x_{0}\right)\right) \\
& =\sigma^{2}\left(\boldsymbol{a}^{T}\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{a}+\boldsymbol{a}^{T}\left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{a}\right) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(\bar{x}_{1}-x_{0}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{1}\right)^{2}}+\frac{1}{m}+\frac{\left(\bar{x}_{2}-x_{0}\right)^{2}}{\sum_{i=1}^{m}\left(x_{i}-\bar{x}_{2}\right)^{2}}\right) \\
& =\sigma^{2} H\left(x_{0}\right)
\end{aligned}
$$

where $\boldsymbol{\lambda}=\left[1, x_{0}\right]^{T}$. That is,

$$
\hat{\eta}_{1}\left(x_{0}\right)-\hat{\eta}_{2}\left(x_{0}\right) \sim \mathrm{N}\left(\eta_{1}\left(x_{0}\right)-\eta_{2}\left(x_{0}\right), \sigma^{2} H\left(x_{0}\right)\right) .
$$

By letting $x_{0}=\gamma$, we have

$$
\hat{\eta}_{1}(\gamma)-\hat{\eta}_{2}(\gamma) \sim \mathrm{N}\left(0, \sigma^{2} H(\gamma)\right)
$$

Thus,

$$
\frac{\left(\hat{\eta}_{1}(\gamma)-\hat{\eta}_{2}(\gamma)\right)^{2}}{\hat{\sigma}^{2} H(\gamma)}=\frac{\left(\hat{\beta}_{1,0}-\hat{\beta}_{1,1} \gamma-\hat{\beta}_{2,0}-\hat{\beta}_{2,1} \gamma\right)^{2}}{\hat{\sigma}^{2} H(\gamma)} \sim F(1, n+m-4)
$$

Thus, the 95% confidence interval for γ is

$$
\left\{\gamma \left\lvert\, \frac{\left(\hat{\beta}_{1,0}-\hat{\beta}_{1,1} \gamma-\hat{\beta}_{2,0}-\hat{\beta}_{2,1} \gamma\right)^{2}}{\hat{\sigma}^{2} H(\gamma)}<F_{\alpha}(1, n+m-4)\right.\right\} .
$$

This interval should exist (at least the estimate $\hat{\gamma}$ will exist) as long as more than one distinct x value is observed and $\hat{\beta}_{2,1}-\hat{\beta}_{1,1} \neq 0$ (which has probability 1).
4. Two contrasts $\boldsymbol{c}_{i}^{T} \hat{\boldsymbol{\beta}}$ and $\boldsymbol{c}_{j}^{T} \hat{\boldsymbol{\beta}}$ are said to be orthogonal if $\boldsymbol{c}_{i}^{T} \boldsymbol{c}_{j}=0$.

Since we are assuming normality, they are independent if $\operatorname{cov}\left(\boldsymbol{c}_{i}^{T} \hat{\boldsymbol{\beta}}, \boldsymbol{c}_{j}^{T} \hat{\boldsymbol{\beta}}\right)=0$. We also know that $\operatorname{cov}\left(\boldsymbol{c}_{i}^{T} \hat{\boldsymbol{\beta}}, \boldsymbol{c}_{j}^{T} \hat{\boldsymbol{\beta}}\right)=\sigma^{2} \boldsymbol{c}_{i}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{c}_{j}$ and this is invariant to the choice of generalized inverse
$\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$because the contrasts are estimable. For the balanced one-way ANOVA model, $y_{i, j}=\mu+\alpha_{i}+\epsilon_{i, j}$ for $i=1,2, \ldots, k$, and $j=1,2, \ldots, n$

$$
\begin{aligned}
& \boldsymbol{X}=\left[\begin{array}{ccccc}
1 & \mathbf{1}_{n} & \mathbf{0} & \cdots & 0 \\
1 & \mathbf{0} & \mathbf{1}_{n} & \cdots & \mathbf{0} \\
1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{n}
\end{array}\right] \\
& \boldsymbol{X}^{T} \boldsymbol{X}=\left[\begin{array}{ccccc}
k n & n & n & \cdots & n \\
n & n & \mathbf{0} & \cdots & \mathbf{0} \\
n & \mathbf{0} & n & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & \mathbf{0} & \mathbf{0} & \cdots & n
\end{array}\right] \\
&\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}=\operatorname{diag}[0,(1 / n), \ldots \ldots \ldots .,(1 / n)]
\end{aligned}
$$

and therefore $\operatorname{cov}\left(\boldsymbol{c}_{i}^{T} \hat{\beta}, \boldsymbol{c}_{j}^{T} \hat{\beta}\right)=\sigma^{2} \boldsymbol{c}_{i}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{c}_{j}=0$ if $\boldsymbol{c}_{i}^{T} \boldsymbol{c}_{j}=0$ (assuming that the first element of \boldsymbol{c}_{i} and \boldsymbol{c}_{j} are 0).
5. Use the cell means model $y_{i, j}=\mu_{i}+\epsilon_{i, j}$ with $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{T}$ and

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
\mathbf{1}_{n_{1}} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{1}_{n_{2}} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{n_{k}}
\end{array}\right]
$$

Then

$$
\boldsymbol{X}^{T} \boldsymbol{X}=\left[\begin{array}{cccc}
n_{1} & 0 & \cdots & 0 \\
0 & n_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & n_{k}
\end{array}\right] \quad \text { and }\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\operatorname{diag}\left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \ldots, \frac{1}{n_{k}}\right)
$$

This yields

$$
\begin{equation*}
\hat{\boldsymbol{\mu}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\left(\bar{y}_{1, \cdot}, \bar{y}_{2, \cdot}, \ldots, \bar{y}_{k, \cdot}\right)^{T}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{\boldsymbol{\mu}} \sim \mathrm{N}_{k}\left(\boldsymbol{\mu}, \operatorname{diag}\left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \ldots, \frac{1}{n_{k}}\right)\right) . \tag{2}
\end{equation*}
$$

Now by (1) we have $\hat{\delta}=\sum_{i=1}^{k} a_{i} \bar{y}_{i,}=\boldsymbol{a}^{T} \hat{\boldsymbol{\mu}}$ and $\hat{\gamma}=\sum_{i=1}^{k} b_{i} \bar{y}_{i,}=\boldsymbol{b}^{T} \hat{\boldsymbol{\mu}}$. Then by normal distribution theory and (2), we know that $\hat{\delta}$ and $\hat{\gamma}$ are independent if and only if

$$
\boldsymbol{a}^{T} \operatorname{Cov}(\hat{\boldsymbol{\mu}}) \boldsymbol{b}=\boldsymbol{a}^{T}\left[\begin{array}{cccc}
\frac{1}{n_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{n_{k}}
\end{array}\right] \boldsymbol{b}=\sum_{i=1}^{k} a_{i} b_{i} / n_{i}=0 .
$$

6. (a)

$$
\begin{array}{rlr}
\mathrm{E}[\hat{\boldsymbol{\epsilon}}] & =\mathrm{E}[(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}] \\
& =(\boldsymbol{I}-\boldsymbol{P}) \mathrm{E}[\boldsymbol{y}] \\
& =(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{X} \boldsymbol{\beta} & \\
& =\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{P} \boldsymbol{X} \boldsymbol{\beta} & \\
& =\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{X} \boldsymbol{\beta} & (\boldsymbol{P} \text { projects } \boldsymbol{X} \text { to } \boldsymbol{X}) \\
& =\mathbf{0} . &
\end{array}
$$

(b)

$$
\begin{aligned}
\operatorname{Cov}[\hat{\boldsymbol{\epsilon}}] & =\operatorname{Cov}[(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}] \\
& =(\boldsymbol{I}-\boldsymbol{P}) \operatorname{Cov}[\boldsymbol{y}](\boldsymbol{I}-\boldsymbol{P})^{T} \\
& =(\boldsymbol{I}-\boldsymbol{P}) \sigma^{2} \boldsymbol{I}(\boldsymbol{I}-\boldsymbol{P})^{T} \\
& =\sigma^{2}(\boldsymbol{I}-\boldsymbol{P})(\boldsymbol{I}-\boldsymbol{P}) \\
& =\sigma^{2}(\boldsymbol{I}-\boldsymbol{P}) .
\end{aligned}
$$

$$
((\boldsymbol{I}-\boldsymbol{P}) \text { is symmetric })
$$

$$
((\boldsymbol{I}-\boldsymbol{P}) \text { is idempotent })
$$

(c)

$$
\begin{aligned}
\operatorname{Cov}[\hat{\boldsymbol{\epsilon}}, \boldsymbol{y}] & =\operatorname{Cov}[(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}, \boldsymbol{y}] \\
& =(\boldsymbol{I}-\boldsymbol{P}) \operatorname{Cov}[\boldsymbol{y}, \boldsymbol{y}] \\
& =(\boldsymbol{I}-\boldsymbol{P}) \sigma^{2} \boldsymbol{I} \\
& =\sigma^{2}(\boldsymbol{I}-\boldsymbol{P}) .
\end{aligned}
$$

(d)

$$
\begin{array}{rlr}
\operatorname{Cov}[\hat{\boldsymbol{\epsilon}}, \hat{\boldsymbol{y}}] & =\operatorname{Cov}[(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}, \boldsymbol{P} \boldsymbol{y}] & \\
& =(\boldsymbol{I}-\boldsymbol{P}) \operatorname{Cov}[\boldsymbol{y}, \boldsymbol{y}] \boldsymbol{P}^{T} & \\
& =(\boldsymbol{I}-\boldsymbol{P}) \sigma^{2} \boldsymbol{I} \boldsymbol{P}^{T} & \\
& =\sigma^{2}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{P} & \\
& =\sigma^{2}(\boldsymbol{P}-\boldsymbol{P} \text { is symmetric }) \\
& =\sigma^{2}(\boldsymbol{P}-\boldsymbol{P}) & \\
& =\mathbf{0} . & \\
(\boldsymbol{P} \text { is idempotent })
\end{array}
$$

