
Spring 16 – AMS256 Homework 4

1. In vector form, our model can be written as y = Xβ + ε with
y = (17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)T , β = (µ, α1, α2, α3, α4, β1, β2, β3)

T , and

X
13×8

=



1 1 0 0 0 1 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0
1 0 1 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 1



,

with rank r = 6.

The hypothesis H0 : β1 = β2 = β3 can be re-written as the following two hypotheses: β1−β2 =
0 and β1−β3 = 0 represented as λT1 β = 0 and λT2 β = 0 where λ1 = (0, 0, 0, 0, 0, 1,−1, 0)T , λ2 =
(0, 0, 0, 0, 0, 1, 0,−1)T . This hypothesis is testable if λT1 β and λT2 β are estimable and λ1 and λ2

are linearly independent. Note that λT1 = aT1X where a1 = (1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

and λT2 = aT2X where a2 = (1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , meaning we get λ1 by subtract-
ing row 3 from row 1 in X and we get λ2 by subtracting row 4 from row 1 in X. Hence, these
are estimable functions and the hypothesis is testable.

Now let Λ = [λ1,λ2]. We write H0 as ΛTβ = 0. If this hypothesis is true, then we have

Q

σ2
=

(ΛT β̂ − 0)T (ΛT (XTX)−Λ)−1(ΛT β̂ − 0)

σ2
∼ χ2

s ,

where s = rank(Λ) = 2, β̂ is any solution to the normal equations and (XTX)− is any
generalized inverse of (XTX). Since Q is independent of SSE = (y−Xβ̂)T (y−Xβ̂), we also
have (if H0 is true)

F =
Q/s

SSE/(13− r)
∼ F (s, 13− r) .

In this example, Q = 145.65, SSE= 70.51, and F = 7.229. This exceeds the critical value
F0.05(2, 7) = 4.256, so we reject H0 at the .05 level and conclude that at least one βj is not
equal to the others.

We can also test this hypothesis in R, although we have to account for different parameteriza-
tion. By default in R, the model is written as

yi,j,k = γ + ai + bj + εi,j,k, i = 1, 2, 3, 4, j = 1, 2, 3 ,
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where a1 = b1 = 0, so that

γ = µ+ α1 + β1 = E(y1,1,1) ,

a2 = (µ+ α2 + β1)− (µ+ α1 + β1) ,

= α2 − α1 = E(y2,1,1 − y1,1,1) ,
a3 = α3 − α1 = E(y3,1,1 − y1,1,1) ,
a4 = α4 − α1 = E(y4,1,1 − y1,1,1) ,
b2 = (µ+ α1 + β2)− (µ+ α1 + β1) ,

= β2 − β1 = E(y1,2,1 − y1,1,1) ,
b3 = β3 − β1 = E(y1,3,1 − y1,1,1) .

With this parameterization, the hypothesis becomes H0: b2 = b3 = 0 which can be expressed
with b2 = 0 and b3 − b2 = 0. The following code demonstrates setting up and testing this
hypothesis in three ways.

y <- c(17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)

A <- c(rep(1, 4), rep(2, 3), rep(3, 2), rep(4,4))

B <- c(1,1,2,3, 1,3,3, 1,3, 1,2,2,3)

dat <- data.frame(y=y, A=factor(A), B=factor(B))

mod <- lm(y ~ A + B, data=dat)

model.matrix(mod)

summary(mod)

anova(mod) # note that this hypothesis is the same as

# factor B being significant

library(multcomp)

test0 <- glht(mod, linfct=c("B2=0", "B3-B2=0"))

summary(test0, test=Ftest())

(Lam <- matrix(c(0,0,0,0,1,0,

0,0,0,0,1,-1),

nrow=2, byrow=TRUE))

test1 <- glht(mod, linfct=Lam, rhs=c(0,0))

summary(test1, test=Ftest()) # gives the same answer

> General Linear Hypotheses

>

> Linear Hypotheses:

> Estimate

> B2 == 0 -4.629

> B3 - B2 == 0 9.827

>

> Global Test:
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> F DF1 DF2 Pr(>F)

> 7.229 2 7 0.01983

2. We can write this model as y = Xβ + ε with β = (α1, α2)
T ,

X
3×2

=

1 0
2 −1
1 2

 , XTX =

[
6 0
0 5

]
, and (XTX)−1 =

[
1/6 0
0 1/5

]
.

We can also write H0 : α1 − α2 = 0 which is λTβ = 0 with λ = (1,−1)T = XTa and
a = (−1, 1, 0)T , so H0 is testable.

Now,

β̂ = (XTX)−1XTy =

[
1/6 0
0 1/5

] [
1 2 1
0 −1 2

]y1y2
y3

 =

[
1
6(y1 + 2y2 + y3)
1
5(−y2 + 2y3)

]
,

P = X(XTX)−1XT =

1 0
2 −1
1 2

[1/6 0
0 1/5

] [
1 2 1
0 −1 2

]
=

1
6

1
3

1
6

1
3

13
15

−1
15

1
6

−1
15

29
30

 ,

I − P =

−5
6

1
3

1
6

1
3

−2
15

−1
15

1
6

−1
15

−1
30

 ,

λT (XTX)−1λ =
[
1 −1

] [1/6 0
0 1/5

] [
1
−1

]
=

1

6
+

1

5
=

11

30
,

λT β̂ =
1

6
(y1 + 2y2 + y3)−

1

5
(−y2 + 2y3) ,

Q = (λT β̂ − 0)T (λT (XTX)−1λ)−1(λT β̂ − 0) =
30

11
(λT β̂)2

=
1

330

(
25y21 + 256y22 + 49y23 + 160y1y2 − 170y1y3 − 224y2y3

)
,

and

SSE = yT (I − P )y =
1

30

[
y1 y2 y3

] −25 10 5
10 −4 −2
5 −2 −1

y1y2
y3


=

1

30

[
y1 y2 y3

] −25 20 10
0 −4 −4
0 0 −1

y1y2
y3


=

1

30

(
−25y21 − 4y22 − 2y23 + 20y1y2 + 10y1y3 − 4y2y3

)
.
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Under H0 :

F =
Q/1

SSE/1
∼ F (1, 3− 2),

which we can use to test the hypothesis.

3. We can write the model as y = Xβ + ε where β = (β1,0, β1,1, β2,0, β2,1)
T and

X
(n+m)×4

=

X1
n×2

0
n×2

0
m×2

X2
m×2

 ,
where the first columns of X1 and X2 contain ones and the second columns contain x values.
Now

XTX
4×4

=

XT
1

2×n
0

2×m

0
2×n

XT
2

2×m

X1
n×2

0
n×2

0
m×2

X2
m×2

 =

XT
1X1
2×2

0
2×2

0
2×2

XT
2X2
2×2

 ,
and

(XTX)−1 =

[
(XT

1X1)
−1 0

0 (XT
2X2)

−1

]
,

so that

β̂MLE = (XTX)−1XTy

=

[
(XT

1X1)
−1 0

0 (XT
2X2)

−1

] [
XT

1 0

0 XT
2

]
y

=

[
(XT

1X1)
−1XT

1 0

0 (XT
2X2)

−1XT
2

]
y

=

[
(XT

1X1)
−1XT

1 y1
(XT

2X2)
−1XT

2 y2

]
,

where y1 contains the first n values of y and y2 contains the last m. These are simple linear
regressions, so if we denote the first n (x, y) pairs as (x1,i, y1,i) for i = 1, . . . , n and the last m
as (x2,j , y2,j) for j = 1, . . . ,m, then we can write the MLEs as

β̂1,1 =

∑n
i=1 x1,iy1,i − nx̄1ȳ1∑n

i=1 x
2
1,i − nx̄1

, β̂1,0 = ȳ1 − β̂1,1x̄1 ,

and

β̂2,1 =

∑m
j=1 x2,jy2,j −mx̄2ȳ2∑m

j=1 x
2
2,j −mx̄2

, β̂2,0 = ȳ2 − β̂2,1x̄2 .

Also

σ̂2MLE = (y −Xβ̂)T (y −Xβ̂)/(n+m) .
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As for γ, we know it solves β1,0 + β1,1γ = β2,0 + β2,1γ, so

γ =
β1,0 − β2,0
β2,1 − β1,1

.

By the invariance property of MLEs, we have

γ̂MLE =
β̂1,0 − β̂2,0
β̂2,1 − β̂1,1

.

Now we find the confidence interval of γ (as you will see, this is challenging!). Let η1(x0) =
β1,0 + β1,1x0 and η2(x0) = β2,0 + β2,1x0 for any x0. We know η1(γ) = η2(γ) for γ. Their MLE
(LSE) becomes

η̂1(x0) = β̂1,0 + β̂1,1x0, η̂2(x0) = β̂2,0 + β̂2,1x0.

η̂1(x0) and η̂2(x0) are independent and follow normal distributions. So, the distribution of
η̂1(x0)− η̂2(x0) also follows a normal distribution whose mean and variance are

E(η̂1(x0)− η̂2(x0)) = β1,0 + β1,1x0 − β2,0 − β2,1x0,
Var(η̂1(x0)− η̂2(x0)) = Var(η̂1(x0)) + Var(η̂2(x0))

= σ2(aT (XT
1X1)

−1a+ aT (XT
2X2)

−1a)

= σ2
(

1

n
+

(x̄1 − x0)2∑n
i=1(xi − x̄1)2

+
1

m
+

(x̄2 − x0)2∑m
i=1(xi − x̄2)2

)
= σ2H(x0)

where λ = [1, x0]
T . That is,

η̂1(x0)− η̂2(x0) ∼ N(η1(x0)− η2(x0), σ2H(x0)).

By letting x0 = γ, we have
η̂1(γ)− η̂2(γ) ∼ N(0, σ2H(γ)).

Thus,
(η̂1(γ)− η̂2(γ))2

σ̂2H(γ)
=

(β̂1,0 − β̂1,1γ − β̂2,0 − β̂2,1γ)2

σ̂2H(γ)
∼ F (1, n+m− 4)

Thus, the 95% confidence interval for γ is

{γ | (β̂1,0 − β̂1,1γ − β̂2,0 − β̂2,1γ)2

σ̂2H(γ)
< Fα(1, n+m− 4)}.

This interval should exist (at least the estimate γ̂ will exist) as long as more than one distinct
x value is observed and β̂2,1 − β̂1,1 6= 0 (which has probability 1).

4. Two contrasts cTi β̂ and cTj β̂ are said to be orthogonal if cTi cj = 0.

Since we are assuming normality, they are independent if cov(cTi β̂, cTj β̂)=0. We also know

that cov(cTi β̂, cTj β̂)=σ2cTi (XTX)−cj and this is invariant to the choice of generalized inverse
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(XTX)− because the contrasts are estimable. For the balanced one-way ANOVA model,
yi,j = µ+αi+εi,j for i = 1, 2, ...., k, and j = 1, 2, ...., n

X =


1 1n 0 · · · 0
1 0 1n · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1n

 .

XTX =


kn n n · · · n
n n 0 · · · 0
n 0 n · · · 0
...

...
...

. . .
...

n 0 0 · · · n

 .

(XTX)− = diag[0, (1/n), ........., (1/n)]

and therefore cov(cTi β̂, cTj β̂) = σ2cTi (XTX)−1cj = 0 if cTi cj = 0 (assuming that the first
element of ci and cj are 0).

5. Use the cell means model yi,j = µi + εi,j with µ = (µ1, . . . , µk)
T and

X =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nk

 .
Then

XTX =


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · nk

 and (XTX)−1 = diag(
1

n1
,

1

n2
, . . . ,

1

nk
) .

This yields

µ̂ = (XTX)−1XTy = (ȳ1,·, ȳ2,·, . . . , ȳk,·)
T , (1)

with

µ̂ ∼ Nk

(
µ, diag(

1

n1
,

1

n2
, . . . ,

1

nk
)

)
. (2)

Now by (1) we have δ̂ =
∑k

i=1 aiȳi,· = aT µ̂ and γ̂ =
∑k

i=1 biȳi,· = bT µ̂. Then by normal

distribution theory and (2), we know that δ̂ and γ̂ are independent if and only if

aTCov(µ̂)b = aT


1
n1

0 · · · 0

0 1
n2
· · · 0

...
...

. . .
...

0 0 · · · 1
nk

 b =

k∑
i=1

aibi/ni = 0 . �
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6. (a)

E[ε̂] = E[(I − P )y]

= (I − P )E[y]

= (I − P )Xβ

= Xβ − PXβ
= Xβ −Xβ (P projects X to X)

= 0 .

(b)

Cov[ε̂] = Cov[(I − P )y]

= (I − P )Cov[y](I − P )T

= (I − P )σ2I(I − P )T

= σ2(I − P )(I − P ) ((I − P ) is symmetric)

= σ2(I − P ) . ((I − P ) is idempotent)

(c)

Cov[ε̂,y] = Cov[(I − P )y,y]

= (I − P )Cov[y,y]

= (I − P )σ2I

= σ2(I − P ) .

(d)

Cov[ε̂, ŷ] = Cov[(I − P )y,Py]

= (I − P )Cov[y,y]P T

= (I − P )σ2IP T

= σ2(I − P )P (P is symmetric)

= σ2(P − PP )

= σ2(P − P ) (P is idempotent)

= 0 .
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