AMS256 Homework 4

1. In vector form, our model can be written as $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{y} = (17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)^T$, $\boldsymbol{\beta} = (\mu, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2, \beta_3)^T$, and

$$\mathbf{X}_{13\times8} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

with rank r = 6.

Now let $\Lambda = [\lambda_1, \lambda_2]$. We write H_0 as $\Lambda^T \beta = 0$. If this hypothesis is true, then we have

$$\frac{Q}{\sigma^2} = \frac{(\mathbf{\Lambda}^T \hat{\boldsymbol{\beta}} - \mathbf{0})^T (\mathbf{\Lambda}^T (\boldsymbol{X}^T \boldsymbol{X})^- \mathbf{\Lambda})^{-1} (\mathbf{\Lambda}^T \hat{\boldsymbol{\beta}} - \mathbf{0})}{\sigma^2} \sim \chi_s^2$$

,

where $s = \operatorname{rank}(\mathbf{\Lambda}) = 2$, $\hat{\boldsymbol{\beta}}$ is any solution to the normal equations and $(\mathbf{X}^T \mathbf{X})^-$ is any generalized inverse of $(\mathbf{X}^T \mathbf{X})$. Since Q is independent of $SSE = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$, we also have (if H_0 is true)

$$F = \frac{Q/s}{SSE/(13-r)} \sim F(s, 13-r).$$

In this example, Q = 145.65, SSE = 70.51, and F = 7.229. This exceeds the critical value $F_{0.05}(2,7) = 4.256$, so we reject H_0 at the .05 level and conclude that at least one β_j is not equal to the others.

We can also test this hypothesis in R, although we have to account for different parameterization. By default in R, the model is written as

$$y_{i,j,k} = \gamma + a_i + b_j + \epsilon_{i,j,k}, \quad i = 1, 2, 3, 4, \quad j = 1, 2, 3,$$

where $a_1 = b_1 = 0$, so that

$$\begin{split} \gamma &= \mu + \alpha_1 + \beta_1 = \mathcal{E}(y_{1,1,1}) \,, \\ a_2 &= (\mu + \alpha_2 + \beta_1) - (\mu + \alpha_1 + \beta_1) \,, \\ &= \alpha_2 - \alpha_1 = \mathcal{E}(y_{2,1,1} - y_{1,1,1}) \,, \\ a_3 &= \alpha_3 - \alpha_1 = \mathcal{E}(y_{3,1,1} - y_{1,1,1}) \,, \\ a_4 &= \alpha_4 - \alpha_1 = \mathcal{E}(y_{4,1,1} - y_{1,1,1}) \,, \\ b_2 &= (\mu + \alpha_1 + \beta_2) - (\mu + \alpha_1 + \beta_1) \,, \\ &= \beta_2 - \beta_1 = \mathcal{E}(y_{1,2,1} - y_{1,1,1}) \,, \\ b_3 &= \beta_3 - \beta_1 = \mathcal{E}(y_{1,3,1} - y_{1,1,1}) \,. \end{split}$$

With this parameterization, the hypothesis becomes H_0 : $b_2 = b_3 = 0$ which can be expressed with $b_2 = 0$ and $b_3 - b_2 = 0$. The following code demonstrates setting up and testing this hypothesis in three ways.

```
y <- c(17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)
A <- c(rep(1, 4), rep(2, 3), rep(3, 2), rep(4,4))
B <- c(1,1,2,3, 1,3,3, 1,3, 1,2,2,3)
dat <- data.frame(y=y, A=factor(A), B=factor(B))</pre>
mod <- lm(y ~ A + B, data=dat)</pre>
model.matrix(mod)
summary(mod)
anova(mod) # note that this hypothesis is the same as
            # factor B being significant
library(multcomp)
test0 <- glht(mod, linfct=c("B2=0", "B3-B2=0"))</pre>
summary(test0, test=Ftest())
(Lam <- matrix(c(0,0,0,0,1,0,
                 0, 0, 0, 0, 1, -1),
               nrow=2, byrow=TRUE))
test1 <- glht(mod, linfct=Lam, rhs=c(0,0))</pre>
summary(test1, test=Ftest()) # gives the same answer
> General Linear Hypotheses
>
> Linear Hypotheses:
>
               Estimate
> B2 == 0
               -4.629
> B3 - B2 == 0 9.827
>
> Global Test:
```

> F DF1 DF2 Pr(>F) > 7.229 2 7 0.01983

2. We can write this model as $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{\beta} = (\alpha_1, \alpha_2)^T$,

$$\mathbf{X}_{3\times 2} = \begin{bmatrix} 1 & 0\\ 2 & -1\\ 1 & 2 \end{bmatrix}, \ \mathbf{X}^T \mathbf{X} = \begin{bmatrix} 6 & 0\\ 0 & 5 \end{bmatrix}, \text{ and } (\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} 1/6 & 0\\ 0 & 1/5 \end{bmatrix}.$$

We can also write H_0 : $\alpha_1 - \alpha_2 = 0$ which is $\boldsymbol{\lambda}^T \boldsymbol{\beta} = 0$ with $\boldsymbol{\lambda} = (1, -1)^T = \boldsymbol{X}^T \boldsymbol{a}$ and $\boldsymbol{a} = (-1, 1, 0)^T$, so H_0 is testable. Now,

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} = \begin{bmatrix} 1/6 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{6}(y_1 + 2y_2 + y_3) \\ \frac{1}{5}(-y_2 + 2y_3) \end{bmatrix} ,\\ \boldsymbol{P} &= \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1/6 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{15} & \frac{1}{25} \\ \frac{1}{6} & \frac{1}{15} & \frac{1}{25} \\ \frac{1}{6} & \frac{1}{15} & \frac{1}{25} \\ \frac{1}{6} & \frac{1}{15} & \frac{1}{5} \end{bmatrix} ,\\ \boldsymbol{I} &= \boldsymbol{P} = \begin{bmatrix} \frac{-5}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{6} & \frac{1}{15} & \frac{1}{5} \\ \frac{1}{6} & \frac{1}{15} & \frac{1}{5} \end{bmatrix} ,\\ \boldsymbol{\lambda}^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{\lambda} &= \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1/6 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{6} + \frac{1}{5} = \frac{11}{30} ,\\ \boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}} &= \frac{1}{6}(y_1 + 2y_2 + y_3) - \frac{1}{5}(-y_2 + 2y_3) ,\\ \boldsymbol{Q} &= (\boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}} - 0)^T (\boldsymbol{\lambda}^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{\lambda})^{-1} (\boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}} - 0) = \frac{30}{11} (\boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}})^2 \\ &= \frac{1}{330} \left(25y_1^2 + 256y_2^2 + 49y_3^2 + 160y_1y_2 - 170y_1y_3 - 224y_2y_3 \right) , \end{split}$$

and

$$SSE = \mathbf{y}^{T} (\mathbf{I} - \mathbf{P}) \mathbf{y} = \frac{1}{30} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} -25 & 10 & 5 \\ 10 & -4 & -2 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$
$$= \frac{1}{30} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} -25 & 20 & 10 \\ 0 & -4 & -4 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$
$$= \frac{1}{30} \left(-25y_{1}^{2} - 4y_{2}^{2} - 2y_{3}^{2} + 20y_{1}y_{2} + 10y_{1}y_{3} - 4y_{2}y_{3} \right).$$

Under H_0 :

$$F = \frac{Q/1}{SSE/1} \sim F(1, 3 - 2),$$

which we can use to test the hypothesis.

3. We can write the model as $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{\beta} = (\beta_{1,0}, \beta_{1,1}, \beta_{2,0}, \beta_{2,1})^T$ and

$$\mathbf{X}_{(n+m)\times 4} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{0} \\ n \times 2 & n \times 2 \\ \mathbf{0} & \mathbf{X}_2 \\ m \times 2 & m \times 2 \end{bmatrix},$$

where the first columns of X_1 and X_2 contain ones and the second columns contain x values. Now

$$\boldsymbol{X}_{4\times4}^{T}\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_{1}^{T} & \boldsymbol{0} \\ \frac{2\times n}{2\times m} & \frac{2\times m}{2} \\ \boldsymbol{0} & \boldsymbol{X}_{2}^{T} \\ \frac{2\times n}{2\times m} & \frac{2\times m}{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_{1} & \boldsymbol{0} \\ \frac{n\times 2}{2} & \frac{n\times 2}{2} \\ \boldsymbol{0} & \boldsymbol{X}_{2} \\ \frac{2\times 2}{2\times 2} & \frac{2\times 2}{2\times 2} \end{bmatrix},$$

and

$$(\boldsymbol{X}^T\boldsymbol{X})^{-1} = \begin{bmatrix} (\boldsymbol{X}_1^T\boldsymbol{X}_1)^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & (\boldsymbol{X}_2^T\boldsymbol{X}_2)^{-1} \end{bmatrix},$$

so that

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{MLE}} &= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \\ &= \begin{bmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_1^T & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{X}_2^T \end{bmatrix} \boldsymbol{y} \\ &= \begin{bmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T & \boldsymbol{0} \\ \boldsymbol{0} & (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T \end{bmatrix} \boldsymbol{y} \\ &= \begin{bmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y}_1 \\ (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T \boldsymbol{y}_2 \end{bmatrix}, \end{split}$$

where y_1 contains the first *n* values of y and y_2 contains the last *m*. These are simple linear regressions, so if we denote the first *n* (x, y) pairs as $(x_{1,i}, y_{1,i})$ for $i = 1, \ldots, n$ and the last *m* as $(x_{2,j}, y_{2,j})$ for $j = 1, \ldots, m$, then we can write the MLEs as

$$\hat{\beta}_{1,1} = \frac{\sum_{i=1}^{n} x_{1,i} y_{1,i} - n\bar{x}_1 \bar{y}_1}{\sum_{i=1}^{n} x_{1,i}^2 - n\bar{x}_1}, \ \hat{\beta}_{1,0} = \bar{y}_1 - \hat{\beta}_{1,1} \bar{x}_1,$$

and

$$\hat{\beta}_{2,1} = \frac{\sum_{j=1}^{m} x_{2,j} y_{2,j} - m\bar{x}_2 \bar{y}_2}{\sum_{j=1}^{m} x_{2,j}^2 - m\bar{x}_2}, \ \hat{\beta}_{2,0} = \bar{y}_2 - \hat{\beta}_{2,1} \bar{x}_2.$$

 Also

$$\hat{\sigma}_{\text{MLE}}^2 = (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})/(n+m) \,.$$

As for γ , we know it solves $\beta_{1,0} + \beta_{1,1}\gamma = \beta_{2,0} + \beta_{2,1}\gamma$, so

$$\gamma = \frac{\beta_{1,0} - \beta_{2,0}}{\beta_{2,1} - \beta_{1,1}}$$

By the invariance property of MLEs, we have

$$\hat{\gamma}_{\text{MLE}} = \frac{\hat{\beta}_{1,0} - \hat{\beta}_{2,0}}{\hat{\beta}_{2,1} - \hat{\beta}_{1,1}} \,.$$

Now we find the confidence interval of γ (as you will see, this is challenging!). Let $\eta_1(x_0) = \beta_{1,0} + \beta_{1,1}x_0$ and $\eta_2(x_0) = \beta_{2,0} + \beta_{2,1}x_0$ for any x_0 . We know $\eta_1(\gamma) = \eta_2(\gamma)$ for γ . Their MLE (LSE) becomes

$$\hat{\eta}_1(x_0) = \hat{\beta}_{1,0} + \hat{\beta}_{1,1}x_0, \quad \hat{\eta}_2(x_0) = \hat{\beta}_{2,0} + \hat{\beta}_{2,1}x_0.$$

 $\hat{\eta}_1(x_0)$ and $\hat{\eta}_2(x_0)$ are independent and follow normal distributions. So, the distribution of $\hat{\eta}_1(x_0) - \hat{\eta}_2(x_0)$ also follows a normal distribution whose mean and variance are

$$\begin{aligned} \mathrm{E}(\hat{\eta}_{1}(x_{0}) - \hat{\eta}_{2}(x_{0})) &= \beta_{1,0} + \beta_{1,1}x_{0} - \beta_{2,0} - \beta_{2,1}x_{0}, \\ \mathrm{Var}(\hat{\eta}_{1}(x_{0}) - \hat{\eta}_{2}(x_{0})) &= \mathrm{Var}(\hat{\eta}_{1}(x_{0})) + \mathrm{Var}(\hat{\eta}_{2}(x_{0})) \\ &= \sigma^{2}(\boldsymbol{a}^{T}(\boldsymbol{X}_{1}^{T}\boldsymbol{X}_{1})^{-1}\boldsymbol{a} + \boldsymbol{a}^{T}(\boldsymbol{X}_{2}^{T}\boldsymbol{X}_{2})^{-1}\boldsymbol{a}) \\ &= \sigma^{2}\left(\frac{1}{n} + \frac{(\bar{x}_{1} - x_{0})^{2}}{\sum_{i=1}^{n}(x_{i} - \bar{x}_{1})^{2}} + \frac{1}{m} + \frac{(\bar{x}_{2} - x_{0})^{2}}{\sum_{i=1}^{m}(x_{i} - \bar{x}_{2})^{2}}\right) \\ &= \sigma^{2}H(x_{0})\end{aligned}$$

where $\boldsymbol{\lambda} = [1, x_0]^T$. That is,

$$\hat{\eta}_1(x_0) - \hat{\eta}_2(x_0) \sim \mathcal{N}(\eta_1(x_0) - \eta_2(x_0), \sigma^2 H(x_0)).$$

By letting $x_0 = \gamma$, we have

$$\hat{\eta}_1(\gamma) - \hat{\eta}_2(\gamma) \sim \mathcal{N}(0, \sigma^2 H(\gamma)).$$

Thus,

$$\frac{(\hat{\eta}_1(\gamma) - \hat{\eta}_2(\gamma))^2}{\hat{\sigma}^2 H(\gamma)} = \frac{(\hat{\beta}_{1,0} - \hat{\beta}_{1,1}\gamma - \hat{\beta}_{2,0} - \hat{\beta}_{2,1}\gamma)^2}{\hat{\sigma}^2 H(\gamma)} \sim F(1, n + m - 4)$$

Thus, the 95% confidence interval for γ is

$$\{\gamma \mid \frac{(\hat{\beta}_{1,0} - \hat{\beta}_{1,1}\gamma - \hat{\beta}_{2,0} - \hat{\beta}_{2,1}\gamma)^2}{\hat{\sigma}^2 H(\gamma)} < F_{\alpha}(1, n + m - 4)\}$$

This interval should exist (at least the estimate $\hat{\gamma}$ will exist) as long as more than one distinct x value is observed and $\hat{\beta}_{2,1} - \hat{\beta}_{1,1} \neq 0$ (which has probability 1).

4. Two contrasts $\boldsymbol{c}_i^T \hat{\boldsymbol{\beta}}$ and $\boldsymbol{c}_j^T \hat{\boldsymbol{\beta}}$ are said to be orthogonal if $\boldsymbol{c}_i^T \boldsymbol{c}_j = 0$. Since we are assuming normality, they are independent if $\operatorname{cov}(\boldsymbol{c}_i^T \hat{\boldsymbol{\beta}}, \, \boldsymbol{c}_j^T \hat{\boldsymbol{\beta}}) = 0$. We also know that $\operatorname{cov}(\boldsymbol{c}_i^T \hat{\boldsymbol{\beta}}, \, \boldsymbol{c}_j^T \hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{c}_i^T (\boldsymbol{X}^T \boldsymbol{X})^- \boldsymbol{c}_j$ and this is invariant to the choice of generalized inverse $(\mathbf{X}^T \mathbf{X})^-$ because the contrasts are estimable. For the balanced one-way ANOVA model, $y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}$ for i = 1, 2, ..., k, and j = 1, 2, ..., n

$$\boldsymbol{X} = \begin{bmatrix} 1 & \mathbf{1}_n & \mathbf{0} & \cdots & 0 \\ 1 & \mathbf{0} & \mathbf{1}_n & \cdots & \mathbf{0} \\ 1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_n \end{bmatrix}$$

$$\boldsymbol{X}^{T}\boldsymbol{X} = \begin{bmatrix} kn & n & n & \cdots & n \\ n & n & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ n & \boldsymbol{0} & n & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & \boldsymbol{0} & \boldsymbol{0} & \cdots & n \end{bmatrix}$$

$$(\mathbf{X}^T \mathbf{X})^- = diag[0, (1/n), \dots, (1/n)]$$

 $(\mathbf{A} \quad \mathbf{A}) = aiag[0, (1/n), \dots, (1/n)]$ and therefore $\operatorname{cov}(\mathbf{c}_i^T \hat{\beta}, \mathbf{c}_j^T \hat{\beta}) = \sigma^2 \mathbf{c}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{c}_j = 0$ if $\mathbf{c}_i^T \mathbf{c}_j = 0$ (assuming that the first element of \mathbf{c}_i and \mathbf{c}_j are 0).

5. Use the cell means model $y_{i,j} = \mu_i + \epsilon_{i,j}$ with $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^T$ and

$$m{X} = egin{bmatrix} m{1}_{n_1} & m{0} & \cdots & m{0} \ m{0} & m{1}_{n_2} & \cdots & m{0} \ dots & dots & \ddots & dots \ m{0} & m{0} & \cdots & m{1}_{n_k} \end{bmatrix} \,.$$

Then

$$\boldsymbol{X}^{T}\boldsymbol{X} = \begin{bmatrix} n_{1} & 0 & \cdots & 0\\ 0 & n_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & n_{k} \end{bmatrix} \text{ and } (\boldsymbol{X}^{T}\boldsymbol{X})^{-1} = \text{diag}(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \dots, \frac{1}{n_{k}})$$

This yields

$$\hat{\boldsymbol{\mu}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} = (\bar{y}_{1,\cdot}, \bar{y}_{2,\cdot}, \dots, \bar{y}_{k,\cdot})^T, \qquad (1)$$

with

$$\hat{\boldsymbol{\mu}} \sim \mathcal{N}_k\left(\boldsymbol{\mu}, \operatorname{diag}(\frac{1}{n_1}, \frac{1}{n_2}, \dots, \frac{1}{n_k})\right).$$
 (2)

Now by (1) we have $\hat{\delta} = \sum_{i=1}^{k} a_i \bar{y}_{i,\cdot} = \boldsymbol{a}^T \hat{\boldsymbol{\mu}}$ and $\hat{\gamma} = \sum_{i=1}^{k} b_i \bar{y}_{i,\cdot} = \boldsymbol{b}^T \hat{\boldsymbol{\mu}}$. Then by normal distribution theory and (2), we know that $\hat{\delta}$ and $\hat{\gamma}$ are independent if and only if

$$\boldsymbol{a}^{T} \operatorname{Cov}(\hat{\boldsymbol{\mu}}) \boldsymbol{b} = \boldsymbol{a}^{T} \begin{bmatrix} \frac{1}{n_{1}} & 0 & \cdots & 0\\ 0 & \frac{1}{n_{2}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{n_{k}} \end{bmatrix} \boldsymbol{b} = \sum_{i=1}^{k} a_{i} b_{i} / n_{i} = 0. \quad \Box$$

6. (a)

$$E[\hat{\boldsymbol{\epsilon}}] = E[(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{y}]$$

= $(\boldsymbol{I} - \boldsymbol{P})E[\boldsymbol{y}]$
= $(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{X}\boldsymbol{\beta}$
= $\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{P}\boldsymbol{X}\boldsymbol{\beta}$
= $\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{X}\boldsymbol{\beta}$ (\boldsymbol{P} projects \boldsymbol{X} to \boldsymbol{X})
= $\boldsymbol{0}$.

(b)

$$\begin{aligned} \operatorname{Cov}[\hat{\boldsymbol{\epsilon}}] &= \operatorname{Cov}[(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{y}] \\ &= (\boldsymbol{I} - \boldsymbol{P})\operatorname{Cov}[\boldsymbol{y}](\boldsymbol{I} - \boldsymbol{P})^T \\ &= (\boldsymbol{I} - \boldsymbol{P})\sigma^2 \boldsymbol{I}(\boldsymbol{I} - \boldsymbol{P})^T \\ &= \sigma^2 (\boldsymbol{I} - \boldsymbol{P})(\boldsymbol{I} - \boldsymbol{P}) & ((\boldsymbol{I} - \boldsymbol{P}) \text{ is symmetric}) \\ &= \sigma^2 (\boldsymbol{I} - \boldsymbol{P}) \,. & ((\boldsymbol{I} - \boldsymbol{P}) \text{ is idempotent}) \end{aligned}$$

(c)

$$\begin{aligned} \operatorname{Cov}[\hat{\boldsymbol{\epsilon}}, \boldsymbol{y}] &= \operatorname{Cov}[(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{y}, \boldsymbol{y}] \\ &= (\boldsymbol{I} - \boldsymbol{P})\operatorname{Cov}[\boldsymbol{y}, \boldsymbol{y}] \\ &= (\boldsymbol{I} - \boldsymbol{P})\sigma^{2}\boldsymbol{I} \\ &= \sigma^{2}(\boldsymbol{I} - \boldsymbol{P}) \,. \end{aligned}$$

(d)

$$\begin{aligned} \operatorname{Cov}[\hat{\boldsymbol{\epsilon}}, \hat{\boldsymbol{y}}] &= \operatorname{Cov}[(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{y}, \boldsymbol{P}\boldsymbol{y}] \\ &= (\boldsymbol{I} - \boldsymbol{P})\operatorname{Cov}[\boldsymbol{y}, \boldsymbol{y}]\boldsymbol{P}^{T} \\ &= (\boldsymbol{I} - \boldsymbol{P})\sigma^{2}\boldsymbol{I}\boldsymbol{P}^{T} \\ &= \sigma^{2}(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{P} \qquad (\boldsymbol{P} \text{ is symmetric}) \\ &= \sigma^{2}(\boldsymbol{P} - \boldsymbol{P}\boldsymbol{P}) \\ &= \sigma^{2}(\boldsymbol{P} - \boldsymbol{P}) \qquad (\boldsymbol{P} \text{ is idempotent}) \\ &= \boldsymbol{0}. \end{aligned}$$