AMS256 Homework 4

1. In vector form, our model can be written as y = X3 + € with
y = (17,20,15,20,12,11,14,6,17,9,4,6,19)T, B = (u, a1, aa, a3, au, B1, B2, B3)T, and
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X =[1010000 1],
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100010 0 1

with rank » = 6.

The hypothesis Hy : 81 = B2 = B3 can be re-written as the following two hypotheses: 81— 52 =
0 and 31 —f3 = O represented as AT 8 = 0 and AJ' 3 = 0 where A; = (0,0,0,0,0,1, —1,0)7, Ay =
(0,0,0,0,0,1,0,—1)7. This hypothesis is testable if AT 3 and A’ 3 are estimable and X; and Ay
are linearly independent. Note that Al = al’ X where a; = (1,0, -1,0,0,0,0,0,0,0,0,0,0)”
and Al = al X where az = (1,0,0,—1,0,0,0,0,0,0,0,0,0)T, meaning we get A; by subtract-
ing row 3 from row 1 in X and we get A2 by subtracting row 4 from row 1 in X. Hence, these
are estimable functions and the hypothesis is testable.

Now let A = [A1, X2]. We write Hy as AT3 = 0. If this hypothesis is true, then we have

= 02 NXS7

Q _(ATB-0)"ATXTX)"A) ' (ATB-0)
o2

where s = rank(A) = 2, 3 is any solution to the normal equations and (XT){ )~ is any
generalized inverse of (X7 X). Since @ is independent of SSE = (y — X3)T (y — X 3), we also
have (if Hy is true)

Q/s

F=ssmi05 =0

~ F(s,13—1).

In this example, ) = 145.65, SSE= 70.51, and F = 7.229. This exceeds the critical value
Fo05(2,7) = 4.256, so we reject Hy at the .05 level and conclude that at least one f; is not
equal to the others.

We can also test this hypothesis in R, although we have to account for different parameteriza-
tion. By default in R, the model is written as

y17]7k:’y+a7’+b.]+617]7k’ i:1’273747 j:]‘72737



where a1 = by = 0, so that

y=p+ar+ B =Ey1,1),

az = (p+as+p1) — (p+ao1+ p1),
=a—a1 =E(y2,11 —y1,1,1),

az = a3z — a1 =E(y31,1 —y1,1,1),

as =as—o1 =E(ya11—vyi11),

by =(pn+o1+B2) — (p+ar+p1),
=B~ 1 =E(y121—¥y1,1,1),

by =3 —B1=E(i31—v1,11)-

With this parameterization, the hypothesis becomes Hy: by = b3 = 0 which can be expressed
with by = 0 and b3 — bo = 0. The following code demonstrates setting up and testing this
hypothesis in three ways.

y <- c(17, 20, 15, 20, 12, 11, 14, 6, 17, 9, 4, 6, 19)
A <- c(rep(1, 4), rep(2, 3), rep(3, 2), rep(4,4))
B <- c¢(1,1,2,3, 1,3,3, 1,3, 1,2,2,3)

dat <- data.frame(y=y, A=factor(A), B=factor(B))

mod <- lm(y ~ A + B, data=dat)

model.matrix(mod)

summary (mod)

anova(mod) # note that this hypothesis is the same as
# factor B being significant

library (multcomp)
test0 <- glht(mod, linfct=c("B2=0", "B3-B2=0"))
summary (test0, test=Ftest())

(Lam <- matrix(c(0,0,0,0,1,0,
0,0,0,0,1,-1),
nrow=2, byrow=TRUE))
testl <- glht(mod, linfct=Lam, rhs=c(0,0))
summary (testl, test=Ftest()) # gives the same answer

General Linear Hypotheses

Linear Hypotheses:
Estimate

B2 == -4.629

B3 - B2 == 9.827
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> F DF1 DF2 Pr(>F)
> 7.229 2 7 0.01983

2. We can write this model as y = X3 + € with 8 = (a1, a2)?,
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F-2 X X_{O 5| - and (xXTx)7 = |HR

We can also write Hy : a1 — as = 0 which is AT8 = 0 with XA = (1,-DT = XTa and
a=(-1,1,00", so Hy is testable.

Now,
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Under Hy :

_ Q.
~ SSE/1

F(1,3-2),

which we can use to test the hypothesis.
. We can write the model as y = X3 + € where 8 = (81,0, 51.1, £2.0, B21)" and

X; O

nx2 nx2

X
(n+m)x4 0 X9

mx2 mx2

)

where the first columns of X1 and X9 contain ones and the second columns contain z values.
Now

X7 0o11x, o xXTx; 0
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where y; contains the first n values of y and y, contains the last m. These are simple linear
regressions, so if we denote the first n (x,y) pairs as (z1,4,y1,) for i = 1,...,n and the last m
as (z2,5,y2,5) for j =1,...,m, then we can write the MLEs as

n P
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Gy = (y—XB) (y— XB)/(n+m).



As for 7, we know it solves 510+ S1,17 = B2,0 + 2,17, S0

y B1,0 — B2,0
B21 — P11

By the invariance property of MLEs, we have

Bro = Bao
P21 — Pia

AMLE =

Now we find the confidence interval of v (as you will see, this is challenging!). Let n;(z¢) =
B1,0 + Bi1x0 and n2(zo) = P2,0 + P2,120 for any xg. We know 7 () = n2(y) for v. Their MLE
(LSE) becomes A X R A

M (xo) = P10+ Brazo, 72(z0) = B2,0 + P2,120.

M1 (xo) and 72(zp) are independent and follow normal distributions. So, the distribution of

A

M1 (o) — M2(x0) also follows a normal distribution whose mean and variance are

E(1(zo0) — n2(20)) = Bro+ Br,120 — B2,0 — P2,170,
Var(ii(wo) — f2(x0)) = Var(ii(zo)) + Var(fz(zo))
= o2’ (XTX ) a+a"(XTX5) a)
_o2(1 (71 — x0)? 1 (T2 — 20)*
a <n " > (@i — 71)? Tt > (@i — fz)Z)
= o2H(z)

where A = [1, z0]7. That is,

M (zo) — fa(xo) ~ N(nmi(zo) — n2(zo), 0" H(xo)).

By letting xg = v, we have
1(7) = fa(7) ~ N(0,0%H(7)).

Thus,
N o 2 A A A 2 2
(i (2})2132772)(7)) _ (Bro— 5171&’2;(57250 =0 R — 4)

Thus, the 95% confidence interval for v is

(Bi,0 — B1,17 — Poo — Pa17)?

{7 7 ()

< Fo(1,n+m—4)}.

This interval should exist (at least the estimate 7 will exist) as long as more than one distinct
x value is observed and 21 — (1,1 # 0 (which has probability 1).

. Two contrasts c?,@ and cf,[:} are said to be orthogonal if cZ-ch = 0.
Since we are assuming normality, they are independent if cov(cz-TB, ch):O. We also know

that COV(CI-TB, CJTB):JQciT(X Tx )~ c; and this is invariant to the choice of generalized inverse

)



(XTX)~ because the contrasts are estimable. For the balanced one-way ANOVA model,
Yij = ptoite g fori=1,2,....,k,and j =1,2,.....,n

(1 1, 0 - 0]
1 o 1, --- O
xX=/1 0 0 --- O
1 0 0 1, ]
(kn n n n|
n n 0 0
ln 0 0 -+ nj

XTX)™ = diag[0, (1/n), ......... , (1/n)]

(
and therefore cov(c! 3, C;FB) = 02cl'(XTX) 'e; = 0 if ¢/'c; = 0 (assuming that the first
element of ¢; and c; are 0).

. Use the cell means model y; ; = p; + € with g = (u1,..., )7 and
1,, 0 -~ 0
0 1, --- 0
X = . )
0 0 1n,
Then
ni 0 0
ng 1 1 1
XTXx = , and (XTX)™! = diag(—, —,...,—).
S .o ny na ny
0 0 --- mny
This yields
p=(XTX)" Xy = G B2 T0) T (1)
with
. : 1 1 1
o~ Ny <p, d1ag(,,...,)> . (2)
ny Ny nge

Now by (1) we have § = Ele a;yi. = a’fp and 4 = Zle bigi. = bl fr. Then by normal
distribution theory and (2), we know that § and 4 are independent if and only if

1 90 ... 0
n
o L ... 0 k
aTCOV(ﬂ)b =al | ™ ) | b= Zaibi/ni =0. 0O
D L P
0 0 L



Bl = B[(I - P)y]
= (I~ P)Ely

=XB-Xp3 (P projects X to X)

Cov[€] = Cov[(I — P)y]
= (I — P)Cov[y](I — P)T
= (I - P)o*I(I-P)"
= o?(I — P)(I — P) ((I — P) is symmetric)
=o*(I-P). ((I — P) is idempotent)

Covle,y] = Cov[(I — P)y, y]
= (I — P)Covly, y|
= (I - P)o’l
=o*(I-P).

Cov[e, y] = Cov[(I — P)y, Py|
= (I — P)Covly,y|P"

= (I — P)o’1PT

= o%(I - P)P (P is symmetric)
=o*(P - PP)

=o%(P - P) (P is idempotent)
=0.



