AMS256 Homework 3

1. Let \boldsymbol{A} be a $m \times n$ constant matrix and \boldsymbol{x} be a $n \times 1$ random vector. Show that $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{x})=$ $\boldsymbol{A C o v}(\boldsymbol{x}) \boldsymbol{A}^{T}$.
2. Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ and $p \times q$ constant matrices, respectively, and \boldsymbol{x} and \boldsymbol{y} be $n \times 1$ and $q \times 1$ random vectors, respectively. Show that $\operatorname{Cov}(\boldsymbol{A x}, \boldsymbol{B} \boldsymbol{y})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{B}^{T}$.
3. Let \boldsymbol{a} and \boldsymbol{b} be $m \times 1$ and $n \times 1$ constant vectors, respectively, and \boldsymbol{x} and \boldsymbol{y} be $m \times 1$ and $n \times 1$ random vectors, respectively. Show that $\operatorname{Cov}(\boldsymbol{x}-\boldsymbol{a}, \boldsymbol{y}-\boldsymbol{b})=\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})$.
4. Let x_{1}, \ldots, x_{n} be random variables with $\operatorname{Var}\left(x_{1}\right)=\sigma^{2}$ and $x_{i+1}=\rho x_{i}+a$ with a, ρ constants. Find $\operatorname{Cov}(\boldsymbol{x})$ for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$.
5. Let x_{1}, \ldots, x_{n} be independent random variables with $\mathrm{E}\left(x_{i}\right)=\mu$ and $\operatorname{Var}\left(x_{i}\right)=\sigma_{i}^{2}$. Prove that

$$
\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n(n-1)}
$$

is an unbiased estimator of $\operatorname{Var}(\bar{x})$.
6. Let $y_{i}=\beta x_{i}+\epsilon_{i}, i=1,2$ where $\epsilon_{1} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ and $\epsilon_{2} \sim \mathrm{~N}\left(0,2 \sigma^{2}\right)$, and $\epsilon_{1}, \epsilon_{2}$ are assumed independent. Let $x_{1}=1$ and $x_{2}=-1$. Obtain the weighted least squares estimate of β and its variance.
7. If $x \sim \mathrm{~N}\left(0, \sigma^{2}\right)$, write the moment generating function of x and prove that $\mu_{3}=0$ and $\mu_{4}=3 \mu_{2}^{2}$ where μ_{i} denotes the i-th moment of x.
8. Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ such that $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{z}+\boldsymbol{\mu}$ with $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)^{T}, z_{i} \stackrel{i i d}{\sim} \mathrm{~N}(0,1)$ and a $n \times n$ matrix \boldsymbol{A} such that $\Sigma=\boldsymbol{A} \boldsymbol{A}^{T}$ with Σ positive definite. Show that the density of \boldsymbol{y} is

$$
f(\boldsymbol{y})=(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right\} .
$$

9. Show that if $\boldsymbol{x} \sim \mathrm{N}_{k}(\boldsymbol{m}, \Sigma)$, then $\mathrm{E}(\boldsymbol{x})=\boldsymbol{m}$ and $\operatorname{Cov}(\boldsymbol{x})=\Sigma$.
10. Let $\boldsymbol{y} \sim \mathrm{N}_{n}(\boldsymbol{\mu}, \Sigma)$ and \boldsymbol{C} a $p \times n$ matrix. Show that $\boldsymbol{C} \boldsymbol{y} \sim \mathrm{N}_{p}\left(\boldsymbol{C} \boldsymbol{\mu}, \boldsymbol{C} \Sigma \boldsymbol{C}^{T}\right)$.
11. Let $\boldsymbol{y}=\left(\boldsymbol{y}_{1}^{T}, \boldsymbol{y}_{2}^{T}\right)^{T}$ be an n-dimensional random vector with $\boldsymbol{y} \sim \mathrm{N}(\boldsymbol{m}, \Sigma)$. Assume that \boldsymbol{y}_{1} and \boldsymbol{y}_{2} are, respectively, p-dimensional and q-dimensional vectors with $p+q=n$. In addition, assume that

$$
\boldsymbol{m}=\left[\begin{array}{l}
\boldsymbol{m}_{1} \\
\boldsymbol{m}_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] .
$$

Show that \boldsymbol{y}_{1} and \boldsymbol{y}_{2} are independent iff $\Sigma_{12}=\Sigma_{21}^{T}=0$.
12. Let

$$
\left[\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right],\left[\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right], \ldots,\left[\begin{array}{c}
X_{n} \\
Y_{n}
\end{array}\right]
$$

be a random sample from $\mathrm{N}_{2}(\boldsymbol{\theta}, \Sigma)$. This is, $Z_{i} \sim \mathrm{~N}_{2}(\boldsymbol{\theta}, \Sigma)$ with $\boldsymbol{Z}_{i}=\left(X_{i}, Y_{i}\right)^{T}$. Assume that \boldsymbol{Z}_{i} and \boldsymbol{Z}_{j} are independent for $i \neq j$. Find the joint density of the sample means \bar{X} and \bar{Y}.
13. Let $\boldsymbol{Y} \sim \mathrm{N}_{n}(\theta \mathbf{1}, \Sigma)$, where $\sigma_{i, j}=\sigma^{2}$ and $\sigma_{i, j}=\sigma^{2} \rho$ for all $i, j, i \neq j$. Prove the following:
(a) Σ can be written as $\Sigma=\sigma^{2}\left[(\mathbf{1}-\rho) \boldsymbol{I}+\rho \mathbf{1 1}^{T}\right]$.
(b) $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} /\left[\sigma^{2}(1-\rho)\right] \sim \chi_{n-1}^{2}$.
(c) \bar{Y} and $\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}$ are independent.
14. Let $\boldsymbol{X}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \sim \mathrm{~N}(\boldsymbol{\mu}, \Sigma)$ where $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}$ and

$$
\Sigma=\left[\begin{array}{lll}
1 & \rho & 0 \\
\rho & 1 & \rho \\
0 & \rho & 1
\end{array}\right]
$$

(a) What are the marginal distributions of x_{2} and x_{3} ?
(b) Find the distribution of ($x_{1} \mid x_{2}, x_{3}$). Under what condition does this distribution coincide with the marginal distribution of x_{1} ?
(c) For what value of ρ are the two random variables $x_{1}+x_{2}+x_{3}$ and $x_{1}-x_{2}-x_{3}$ independently distributed?
15. The logarithm of the m.g.f. of a trivariate random vector $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ is given by

$$
\log M_{x}(t)=5 t_{1}^{2}+3 t_{2}^{2}+6 t_{3}^{2}-2 t_{1} t_{2}+4 t_{1} t_{3}+2 t_{2} t_{3}+4 t_{1}-2 t_{2}+t_{3} .
$$

Show that x has a trivariate normal distribution. Identify the mean and variance-covariance matrix.
16. Let $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \sim \mathrm{~N}(\mathbf{0}, \Sigma)$, where

$$
\Sigma=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

(a) Find the conditional distribution of $\left(x_{1} \mid x_{2}, x_{3}\right)$.
(b) Find the distribution of $4 x_{1}-6 x_{2}+x_{3}-18$.
17. Suppose that $\boldsymbol{y} \sim \mathrm{N}_{3}\left(\boldsymbol{m}, \sigma^{2} \boldsymbol{I}\right)$. Let

$$
\boldsymbol{m}=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right], \boldsymbol{A}=\frac{1}{3}\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right] .
$$

(a) What is the distribution of $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / \sigma^{2}$?
(b) Are $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{B} \boldsymbol{y}$ independent?
(c) Are $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$ and $y_{1}+y_{2}+y_{3}$ independent?
18. Suppose that $\boldsymbol{y} \sim \mathrm{N}_{n}\left(\boldsymbol{m}, \sigma^{2} \boldsymbol{I}\right)$ and suppose that \boldsymbol{X} is an $n \times p$ matrix of constants with rank $p<n$.
(a) Show that $\boldsymbol{A}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}$ and $\boldsymbol{I}-\boldsymbol{A}$ are idempotent and find the rank of each.
(b) If \boldsymbol{m} is a linear combination of the columns of \boldsymbol{X}, i.e., $\boldsymbol{m}=\boldsymbol{X} \boldsymbol{b}$ for some \boldsymbol{b}, find $\mathrm{E}\left(\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}\right)$ and $\mathrm{E}\left[\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y}\right]$.
(c) Find the distributions of $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / \sigma^{2}$ and $y^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y} / \sigma^{2}$.
(d) Show that $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y}$ are independent.
(e) Find the distribution of

$$
\frac{\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / p}{\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y} /(n-p)}
$$

