AMS256 Homework 3

- 1. Let \boldsymbol{A} be a $m \times n$ constant matrix and \boldsymbol{x} be a $n \times 1$ random vector. Show that $Cov(\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{A}Cov(\boldsymbol{x})\boldsymbol{A}^T$.
- 2. Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ and $p \times q$ constant matrices, respectively, and \boldsymbol{x} and \boldsymbol{y} be $n \times 1$ and $q \times 1$ random vectors, respectively. Show that $\operatorname{Cov}(\boldsymbol{A}\boldsymbol{x}, \boldsymbol{B}\boldsymbol{y}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{B}^{T}$.
- 3. Let \boldsymbol{a} and \boldsymbol{b} be $m \times 1$ and $n \times 1$ constant vectors, respectively, and \boldsymbol{x} and \boldsymbol{y} be $m \times 1$ and $n \times 1$ random vectors, respectively. Show that $\operatorname{Cov}(\boldsymbol{x} \boldsymbol{a}, \boldsymbol{y} \boldsymbol{b}) = \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})$.
- 4. Let x_1, \ldots, x_n be random variables with $\operatorname{Var}(x_1) = \sigma^2$ and $x_{i+1} = \rho x_i + a$ with a, ρ constants. Find $\operatorname{Cov}(\boldsymbol{x})$ for $\boldsymbol{x} = (x_1, \ldots, x_n)^T$.
- 5. Let x_1, \ldots, x_n be independent random variables with $E(x_i) = \mu$ and $Var(x_i) = \sigma_i^2$. Prove that

$$\frac{\sum_i (x_i - \bar{x})^2}{n(n-1)}$$

is an unbiased estimator of $Var(\bar{x})$.

- 6. Let $y_i = \beta x_i + \epsilon_i$, i = 1, 2 where $\epsilon_1 \sim N(0, \sigma^2)$ and $\epsilon_2 \sim N(0, 2\sigma^2)$, and ϵ_1 , ϵ_2 are assumed independent. Let $x_1 = 1$ and $x_2 = -1$. Obtain the weighted least squares estimate of β and its variance.
- 7. If $x \sim N(0, \sigma^2)$, write the moment generating function of x and prove that $\mu_3 = 0$ and $\mu_4 = 3\mu_2^2$ where μ_i denotes the *i*-th moment of x.
- 8. Let $\boldsymbol{y} = (y_1, \ldots, y_n)^T$ such that $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{z} + \boldsymbol{\mu}$ with $\boldsymbol{z} = (z_1, \ldots, z_n)^T$, $z_i \stackrel{iid}{\sim} N(0, 1)$ and a $n \times n$ matrix \boldsymbol{A} such that $\boldsymbol{\Sigma} = \boldsymbol{A}\boldsymbol{A}^T$ with $\boldsymbol{\Sigma}$ positive definite. Show that the density of \boldsymbol{y} is

$$f(\boldsymbol{y}) = (2\pi)^{-n/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right\}.$$

- 9. Show that if $\boldsymbol{x} \sim N_k(\boldsymbol{m}, \Sigma)$, then $E(\boldsymbol{x}) = \boldsymbol{m}$ and $Cov(\boldsymbol{x}) = \Sigma$.
- 10. Let $\boldsymbol{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and \boldsymbol{C} a $p \times n$ matrix. Show that $\boldsymbol{C}\boldsymbol{y} \sim N_p(\boldsymbol{C}\boldsymbol{\mu}, \boldsymbol{C}\boldsymbol{\Sigma}\boldsymbol{C}^T)$.
- 11. Let $\boldsymbol{y} = (\boldsymbol{y}_1^T, \boldsymbol{y}_2^T)^T$ be an *n*-dimensional random vector with $\boldsymbol{y} \sim N(\boldsymbol{m}, \Sigma)$. Assume that \boldsymbol{y}_1 and \boldsymbol{y}_2 are, respectively, *p*-dimensional and *q*-dimensional vectors with p + q = n. In addition, assume that

$$oldsymbol{m} = egin{bmatrix} oldsymbol{m}_1\ oldsymbol{m}_2\end{bmatrix}, \quad \Sigma = egin{bmatrix} \Sigma_{11} & \Sigma_{12}\ \Sigma_{21} & \Sigma_{22}\end{bmatrix}.$$

Show that \boldsymbol{y}_1 and \boldsymbol{y}_2 are independent iff $\Sigma_{12} = \Sigma_{21}^T = 0$.

12. Let

$$\begin{bmatrix} X_1 \\ Y_1 \end{bmatrix}, \begin{bmatrix} X_2 \\ Y_2 \end{bmatrix}, \dots, \begin{bmatrix} X_n \\ Y_n \end{bmatrix}$$

be a random sample from $N_2(\boldsymbol{\theta}, \Sigma)$. This is, $Z_i \sim N_2(\boldsymbol{\theta}, \Sigma)$ with $\boldsymbol{Z}_i = (X_i, Y_i)^T$. Assume that \boldsymbol{Z}_i and \boldsymbol{Z}_j are independent for $i \neq j$. Find the joint density of the sample means \bar{X} and \bar{Y} .

- 13. Let $\boldsymbol{Y} \sim N_n(\theta \boldsymbol{1}, \Sigma)$, where $\sigma_{i,j} = \sigma^2$ and $\sigma_{i,j} = \sigma^2 \rho$ for all $i, j, i \neq j$. Prove the following:
 - (a) Σ can be written as $\Sigma = \sigma^2 [(\mathbf{1} \rho)\mathbf{I} + \rho \mathbf{1}\mathbf{1}^T].$
 - (b) $\sum_{i=1}^{n} (Y_i \bar{Y})^2 / [\sigma^2 (1 \rho)] \sim \chi^2_{n-1}.$
 - (c) \bar{Y} and $\sum_{i} (Y_i \bar{Y})^2$ are independent.

14. Let $\boldsymbol{X} = (x_1, x_2, x_3)^T \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ where $\boldsymbol{\mu} = (\mu_1, \mu_2, \mu_3)^T$ and

$$\Sigma = \begin{bmatrix} 1 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 1 \end{bmatrix}.$$

- (a) What are the marginal distributions of x_2 and x_3 ?
- (b) Find the distribution of $(x_1 | x_2, x_3)$. Under what condition does this distribution coincide with the marginal distribution of x_1 ?
- (c) For what value of ρ are the two random variables $x_1+x_2+x_3$ and $x_1-x_2-x_3$ independently distributed?
- 15. The logarithm of the m.g.f. of a trivariate random vector $\boldsymbol{x} = (x_1, x_2, x_3)^T$ is given by

$$\log M_x(t) = 5t_1^2 + 3t_2^2 + 6t_3^2 - 2t_1t_2 + 4t_1t_3 + 2t_2t_3 + 4t_1 - 2t_2 + t_3.$$

Show that x has a trivariate normal distribution. Identify the mean and variance-covariance matrix.

16. Let $\boldsymbol{x} = (x_1, x_2, x_3)^T \sim \mathcal{N}(\boldsymbol{0}, \Sigma)$, where

$$\Sigma = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

- (a) Find the conditional distribution of $(x_1 \mid x_2, x_3)$.
- (b) Find the distribution of $4x_1 6x_2 + x_3 18$.
- 17. Suppose that $\boldsymbol{y} \sim N_3(\boldsymbol{m}, \sigma^2 \boldsymbol{I})$. Let

$$\boldsymbol{m} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \boldsymbol{A} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}.$$

- (a) What is the distribution of $\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y} / \sigma^2$?
- (b) Are $\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{B} \boldsymbol{y}$ independent?
- (c) Are $\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}$ and $y_1 + y_2 + y_3$ independent?
- 18. Suppose that $\boldsymbol{y} \sim N_n(\boldsymbol{m}, \sigma^2 \boldsymbol{I})$ and suppose that \boldsymbol{X} is an $n \times p$ matrix of constants with rank p < n.
 - (a) Show that $\mathbf{A} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T$ and $\mathbf{I} \mathbf{A}$ are idempotent and find the rank of each.

- (b) If \boldsymbol{m} is a linear combination of the columns of \boldsymbol{X} , i.e., $\boldsymbol{m} = \boldsymbol{X}\boldsymbol{b}$ for some \boldsymbol{b} , find $\mathrm{E}(\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y})$ and $\mathrm{E}[\boldsymbol{y}^T(\boldsymbol{I} \boldsymbol{A})\boldsymbol{y}]$.
- (c) Find the distributions of $\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y} / \sigma^2$ and $y^T (\boldsymbol{I} \boldsymbol{A}) \boldsymbol{y} / \sigma^2$.
- (d) Show that $\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{y}^T (\boldsymbol{I} \boldsymbol{A}) \boldsymbol{y}$ are independent.
- (e) Find the distribution of

$$\frac{\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}/p}{\boldsymbol{y}^T (\boldsymbol{I} - \boldsymbol{A}) \boldsymbol{y}/(n-p)}.$$