
Spring 16 – AMS256 Homework 3

1.

Cov(Ax) = E
[
(Ax− E(Ax))(Ax− E(Ax))T

]
= E

[
(Ax−AE(x))(Ax−AE(x))T

]
= E

[
A(x− E(x))(x− E(x))TAT

]
= AE

[
(x− E(x))(x− E(x))T

]
AT

= ACov(x)AT

2. With the similar method used above,

Cov(Ax, By) = E
[
(Ax− E(Ax))(By − E(By))T

]
= E

[
(Ax−AE(x))(By −BE(y))T

]
= E

[
A(x− E(x))(y − E(y))TBT

]
= AE

[
(x− E(x))(y − E(y))T

]
BT

= ACov(x, y)BT

3. With the similar method used above,

Cov(x− a, y − b) = E
[
(x− a− E(x− a))(y − b− E(y − b))T

]
= E

[
(x− E(x))(y − E(y))T

]
= E

[
(x− E(x))(y − E(y))T

]
= Cov(x, y)

4.

xi+1 = ρxi + a = ρ(ρxi−1 + a) + a

= ρ2xi−1 + aρ+ a

= ρ2(ρxi−2 + a) + aρ+ a

= ρ3xi−2 + aρ2 + aρ+ a

. . .

= ρix1 +
i∑

k=1

aρk−1.

cov(xi, xj) = cov(ρi−1x1 + c1, ρ
j−1x1 + c2)

= ρi+j−2cov(x1, x1) = ρi+j−2σ2

where c1 and c2 are some constants.

[Cov(X)]ij = σ2 · ρi+j−2.
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5. First observe

var(x̄) =
1

n2

∑
var(xi) =

1

n2

∑
σ2
i .

Now we show E{
∑

(xi−x̄)2

n(n−1) } = 1
n2

∑
σ2
i .

E{
∑

(xi − x̄)2

n(n− 1)
} =

1

n(n− 1)
E{
∑

(xi − x̄)2} =
1

n(n− 1)
{
∑

E(x2
i )− 2E(xix̄) + nE(x̄2)}

=
1

n2

∑
σ2
i ,

since E(x2
i ) = σ2

i + µ2 and E(xixj) = µ2, i 6= j.

6. Observe V = diag(1, 2). So, β̂GLS = (XTV −1X)−1XV −1y = (x2
1 + 1

2x
2
2)−1(x1y1 + 1

2x2y2).

Var(β̂GLS) = Var(x2
1 +

1

2
x2

2)−1(x1y1 +
1

2
x2y2) = (x2

1 +
1

2
x2

2)−2(x2
1 +

1

4
x2

2)σ2.

7. The mgf of x is Mx(t) = E[etx] = exp( t
2σ2

2 ).

M ′x(t) = tσ2 exp(
t2σ2

2
)

M ′′x (t) = t2σ4 exp(
t2σ2

2
) + σ2 exp(

t2σ2

2
)

M (3)
x (t) = t3σ6 exp(

t2σ2

2
) + 2tσ4 exp(

t2σ2

2
) + tσ4 exp(

t2σ2

2
)

M (4)
x (t) = t4σ8 exp(

t2σ2

2
) + 3t2σ6 exp(

t2σ2

2
) + 2t2σ6 exp(

t2σ2

2
)

+ 2σ4 exp(
t2σ2

2
) + t2σ6 exp(

t2σ2

2
) + σ4 exp(

t2σ2

2
)

So, µ3 = M3
x(0) = 0 and µ4 = M

(4)
x (0) = 3σ4

8. If zi
iid∼ N(0, 1) then z ∼ Nn(0, I). Since y is a linear combination of a multivariate normal, it

is also a multivariate normal.

E(y) = E(Az) + E(µ) = AE(z) + E(µ) = 0 + µ = µ

and
Cov(y) = Cov(Az) = ACov(z)AT + 0 = AIAT = AAT = Σ.

So y ∼Nn(µ,Σ), which means its density is

f(y) = (2π)−n/2|Σ|−1/2 exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
.

9. Let z be a multivariate standard normal random variable, and by using the transformation
x = m+ V z, where V is a k × k invertible matrix such that Σ = V V T .

E[x] = E[m+ V z] = m] + V 0 = m,

Cov[x] = Cov[m+ V z] = V Cov(z)V T = Σ.
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10. Since y is distributed as Nn(µ,Σ), then its moment generating function is My(t) = exp(tTµ+
1
2t
TΣt). Let x = Cy. The mgf of x is

Mx(t) = E[et
Tz ] = E[et

TCy] = My(tTC) = exp(tT (Cµ) +
1

2
tT (CΣCT )t).

⇒ x = Cy ∼ Np(Cµ,CΣCT ).

11. (−→) If y1 and y2 are independent, then Cov(y1,y2) = 0, and

Cov(y) =

[
Σ11 0
0 Σ22

]
Therefore, Σ12 = ΣT

21 = 0.

(←−) If Σ12 = ΣT
21 = 0, then the mgf for y is

my(t) = exp{tTµ+ tTΣt/2} = exp{tT1 µ1 + tT2 µ2 + tT1 Σ11t1/2 + +tT2 Σ22t2/2}.

That is, my(t) = my1
(t1)×my2

(t2) implying independence between y1 and y2.

12. Observe [x̄, ȳ]T = 1
n

∑
Zi, that is, a linear combination of bivariate normal random variables.[

x̄
ȳ

]
∼ N2(θ,Σ/n)

13. (a) Observe 11T = Jn×n. So Σii = σ2 and Σij = ρσ2, i 6= j.

(b) We can express

n∑
i=1

(Yi − Ȳ )2/[σ2(1− ρ)] = yT { 1

σ2(1− ρ)
(I − 1

n
11T )}︸ ︷︷ ︸

A

y

We can show AΣ = (I − 1
n11T ) is idempotent and rank(AΣ) = n − 1. So

∑n
i=1(Yi −

Ȳ )2/[σ2(1− ρ)] ∼ χ2(n− 1).

(c) We can show

Ȳ =
1

n
1T︸︷︷︸
B

y ∼ N(θ1,
σ2(1− ρ− nρ)

n
).

We can easily check AΣB = 0 so from the result in class, Ȳ and
∑

i(Yi − Ȳ )2 are
independent.

14. (a) x2 ∼ N(µ2, 1) and x3 ∼ N(µ3, 1)

(b) From a result in the lecture (or in Monahan p.116),

x1|x2, x3 ∼ N

(
µ1 +

ρ

1− ρ2
(x2 − µ2)− ρ2

1− ρ2
(x3 − µ3), 1− ρ2

1− ρ2

)
If ρ = 0, x1 | x2, x3 is the same as the marginal of x1, N(µ1, 1).
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(c)

λ = Ax[
x1 + x2 + x3

x1 − x2 − x3

]
=

[
1 1 1
1 −1 −1

]x1

x2

x3


λ1 = x1 +x2 +x3 and λ2 = x1−x2−x3 are independently distributed if Cov(λ1, λ2) = 0.

Cov(λ) = Cov(Ax)

= ACov(x)AT

=

[
3 + 4ρ −1− 2ρ
−1− 2ρ 3

]
So x1 + x2 + x3 and x1 − x2 − x3 are uncorrelated when ρ = −1

2 .

15.
x ∼ N3(µ,Σ)

where

µ =

 4
−2
1

 and Σ =

10 −2 4
−2 6 2
4 2 12

 .
16. (a) This is a normal. Using a result in the lecture, we can find x1 | x2, x3 ∼ N(1

5(3x2−x3), 17
5 ).

(b) Define A = (4,−6, 1)T . Then the shifted linear combination 4x1− 6x2 +x3 is distributed
as N(0, AΣAT ), and hence the linear combination we originally wanted is distributed as
N(−18, AΣAT )

17. (a) See result 5.15 (page 112 in Monahan’s book). Observe that A is idempotent with rank
2. Thus, yTAy/σ2 ∼ χ2(2, 1

2σ2m
TAm).

(b) See result 5.16 (page 113 in Monahan’s book). Observe that

BV A = σ2

[
0 0 0
1 0 −1

]
6= 0

So yTAy and By are not independent.

(c) Let
y1 + y2 + y3 =

[
1 1 1

]
y = Cy

Find that
CV A =

[
0 0 0

]
So yTAy and y1 + y2 + y3 are independent.

18. (a)
AA = X(XTX)−XTX(XTX)−XT = X(XTX)−XT = A

because (XTX)−XT is the generalized inverse of X, and

(I−A)(I−A) = (I−A)
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so A and I−A are idempotent.

The ranks of the matrices are:

rank(A) = trace(A) = p

rank(I −A) = trace(I −A) = n− p.

(b)
E(yTAy) = ‖Xb‖2 + pσ2

E[yT (I −A)y] = (n− p)σ2

(c)

yTAy/σ2 ∼ χ2

(
p, φ =

1

2σ2
(Xb)T(Xb)

)
yT (I −A)y/σ2 ∼ χ2(n− p)

(d) Ay and (I−A)y are independent since[
A

I −A

]
y ∼ N2

([
Xb
0

]
,

[
A 0
0 I−A

])
,

which implies yTAy = ‖Ay‖2 and yT (I −A)y = ‖(I−A)y‖2 are independent.

(e)
yTAy/p

yT (I −A)y/(n− p)
∼ F

(
p, n− p, φ =

1

2σ2
(Xb)2(Xb)

)
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