AMS256 Homework 3

1.

$$
\begin{aligned}
\operatorname{Cov}(\boldsymbol{A} \boldsymbol{x}) & =\mathrm{E}\left[(\boldsymbol{A} \boldsymbol{x}-E(\boldsymbol{A} \boldsymbol{x}))(\boldsymbol{A} \boldsymbol{x}-E(\boldsymbol{A} \boldsymbol{x}))^{T}\right] \\
& =\mathrm{E}\left[(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{A} \mathrm{E}(\boldsymbol{x}))(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{A} \mathrm{E}(\boldsymbol{x}))^{T}\right] \\
& =\mathrm{E}\left[\boldsymbol{A}(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))^{T} \boldsymbol{A}^{T}\right] \\
& =\boldsymbol{A} \mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))^{T}\right] \boldsymbol{A}^{T} \\
& =\boldsymbol{A} \operatorname{Cov}(\boldsymbol{x}) \boldsymbol{A}^{T}
\end{aligned}
$$

2. With the similar method used above,

$$
\begin{aligned}
\operatorname{Cov}(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{B} \boldsymbol{y}) & =\mathrm{E}\left[(\boldsymbol{A} \boldsymbol{x}-\mathrm{E}(\boldsymbol{A} \boldsymbol{x}))(\boldsymbol{B} \boldsymbol{y}-\mathrm{E}(\boldsymbol{B} \boldsymbol{y}))^{T}\right] \\
& =\mathrm{E}\left[(\boldsymbol{A x}-\boldsymbol{A} \mathrm{E}(\boldsymbol{x}))(\boldsymbol{B} \boldsymbol{y}-\boldsymbol{B} \mathrm{E}(\boldsymbol{y}))^{T}\right] \\
& =\mathrm{E}\left[\boldsymbol{A}(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{y}-\mathrm{E}(\boldsymbol{y}))^{T} \boldsymbol{B}^{T}\right] \\
& =\boldsymbol{A} \mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{y}-\mathrm{E}(\boldsymbol{y}))^{T}\right] \boldsymbol{B}^{T} \\
& =\boldsymbol{A} \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{B}^{T}
\end{aligned}
$$

3. With the similar method used above,

$$
\begin{aligned}
\operatorname{Cov}(\boldsymbol{x}-\boldsymbol{a}, \boldsymbol{y}-\boldsymbol{b}) & =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{a}-\mathrm{E}(\boldsymbol{x}-\boldsymbol{a}))(\boldsymbol{y}-\boldsymbol{b}-\mathrm{E}(\boldsymbol{y}-\boldsymbol{b}))^{T}\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{y}-\mathrm{E}(\boldsymbol{y}))^{T}\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}(\boldsymbol{x}))(\boldsymbol{y}-\mathrm{E}(\boldsymbol{y}))^{T}\right] \\
& =\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

4.

$$
\begin{aligned}
x_{i+1}=\rho x_{i}+a & =\rho\left(\rho x_{i-1}+a\right)+a \\
& =\rho^{2} x_{i-1}+a \rho+a \\
& =\rho^{2}\left(\rho x_{i-2}+a\right)+a \rho+a \\
& =\rho^{3} x_{i-2}+a \rho^{2}+a \rho+a \\
& \cdots \\
& =\rho^{i} x_{1}+\sum_{k=1}^{i} a \rho^{k-1} . \\
\operatorname{cov}\left(x_{i}, x_{j}\right)= & \operatorname{cov}\left(\rho^{i-1} x_{1}+c_{1}, \rho^{j-1} x_{1}+c_{2}\right) \\
& =\rho^{i+j-2} \operatorname{cov}\left(x_{1}, x_{1}\right)=\rho^{i+j-2} \sigma^{2}
\end{aligned}
$$

where c_{1} and c_{2} are some constants.

$$
[\operatorname{Cov}(\boldsymbol{X})]_{i j}=\sigma^{2} \cdot \rho^{i+j-2}
$$

5. First observe

$$
\operatorname{var}(\bar{x})=\frac{1}{n^{2}} \sum \operatorname{var}\left(x_{i}\right)=\frac{1}{n^{2}} \sum \sigma_{i}^{2} .
$$

Now we show $\mathrm{E}\left\{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n(n-1)}\right\}=\frac{1}{n^{2}} \sum \sigma_{i}^{2}$.

$$
\begin{aligned}
\mathrm{E}\left\{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n(n-1)}\right\} & =\frac{1}{n(n-1)} \mathrm{E}\left\{\sum\left(x_{i}-\bar{x}\right)^{2}\right\}=\frac{1}{n(n-1)}\left\{\sum \mathrm{E}\left(x_{i}^{2}\right)-2 \mathrm{E}\left(x_{i} \bar{x}\right)+n \mathrm{E}\left(\bar{x}^{2}\right)\right\} \\
& =\frac{1}{n^{2}} \sum \sigma_{i}^{2},
\end{aligned}
$$

since $\mathrm{E}\left(x_{i}^{2}\right)=\sigma_{i}^{2}+\mu^{2}$ and $\mathrm{E}\left(x_{i} x_{j}\right)=\mu^{2}, i \neq j$.
6. Observe $\boldsymbol{V}=\operatorname{diag}(1,2)$. So, $\hat{\beta}_{G L S}=\left(\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{y}=\left(x_{1}^{2}+\frac{1}{2} x_{2}^{2}\right)^{-1}\left(x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}\right)$.

$$
\operatorname{Var}\left(\hat{\beta}_{G L S}\right)=\operatorname{Var}\left(x_{1}^{2}+\frac{1}{2} x_{2}^{2}\right)^{-1}\left(x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}\right)=\left(x_{1}^{2}+\frac{1}{2} x_{2}^{2}\right)^{-2}\left(x_{1}^{2}+\frac{1}{4} x_{2}^{2}\right) \sigma^{2} .
$$

7. The mgf of x is $M_{x}(t)=\mathrm{E}\left[e^{t x}\right]=\exp \left(\frac{t^{2} \sigma^{2}}{2}\right)$.

$$
\begin{aligned}
M_{x}^{\prime}(t) & =t \sigma^{2} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right) \\
M_{x}^{\prime \prime}(t) & =t^{2} \sigma^{4} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+\sigma^{2} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right) \\
M_{x}^{(3)}(t) & =t^{3} \sigma^{6} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+2 t \sigma^{4} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+t \sigma^{4} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right) \\
M_{x}^{(4)}(t) & =t^{4} \sigma^{8} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+3 t^{2} \sigma^{6} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+2 t^{2} \sigma^{6} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right) \\
& +2 \sigma^{4} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+t^{2} \sigma^{6} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)+\sigma^{4} \exp \left(\frac{t^{2} \sigma^{2}}{2}\right)
\end{aligned}
$$

So, $\mu_{3}=M_{x}^{3}(0)=0$ and $\mu_{4}=M_{x}^{(4)}(0)=3 \sigma^{4}$
8. If $z_{i} \stackrel{i i d}{\sim} \mathrm{~N}(0,1)$ then $\boldsymbol{z} \sim \mathrm{N}_{n}(\mathbf{0}, \boldsymbol{I})$. Since \boldsymbol{y} is a linear combination of a multivariate normal, it is also a multivariate normal.

$$
\mathrm{E}(\boldsymbol{y})=\mathrm{E}(\boldsymbol{A} \boldsymbol{z})+\mathrm{E}(\boldsymbol{\mu})=\boldsymbol{A} \mathrm{E}(\boldsymbol{z})+\mathrm{E}(\boldsymbol{\mu})=0+\boldsymbol{\mu}=\boldsymbol{\mu}
$$

and

$$
\operatorname{Cov}(\boldsymbol{y})=\operatorname{Cov}(\boldsymbol{A} \boldsymbol{z})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{z}) \boldsymbol{A}^{T}+0=\boldsymbol{A I} \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{A}^{T}=\Sigma
$$

So $\boldsymbol{y} \sim \boldsymbol{N}_{n}(\boldsymbol{\mu}, \Sigma)$, which means its density is

$$
f(\boldsymbol{y})=(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right\} .
$$

9. Let \boldsymbol{z} be a multivariate standard normal random variable, and by using the transformation $\boldsymbol{x}=\boldsymbol{m}+\boldsymbol{V} \boldsymbol{z}$, where \boldsymbol{V} is a $k \times k$ invertible matrix such that $\Sigma=\boldsymbol{V} \boldsymbol{V}^{T}$.

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{x}] & =\mathrm{E}[\boldsymbol{m}+\boldsymbol{V} \boldsymbol{z}]=\boldsymbol{m}]+\boldsymbol{V} \mathbf{0}=\boldsymbol{m}, \\
\operatorname{Cov}[\boldsymbol{x}] & =\operatorname{Cov}[\boldsymbol{m}+\boldsymbol{V} \boldsymbol{z}]=\boldsymbol{V} \operatorname{Cov}(\boldsymbol{z}) \boldsymbol{V}^{T}=\Sigma .
\end{aligned}
$$

10. Since \boldsymbol{y} is distributed as $\mathrm{N}_{n}(\boldsymbol{\mu}, \Sigma)$, then its moment generating function is $M_{\boldsymbol{y}}(\boldsymbol{t})=\exp \left(\boldsymbol{t}^{T} \boldsymbol{\mu}+\right.$ $\left.\frac{1}{2} \boldsymbol{t}^{T} \Sigma \boldsymbol{t}\right)$. Let $\boldsymbol{x}=\boldsymbol{C} \boldsymbol{y}$. The mgf of \boldsymbol{x} is

$$
\begin{aligned}
& M_{\boldsymbol{x}}(\boldsymbol{t})=\mathrm{E}\left[e^{\boldsymbol{t}^{T}} \boldsymbol{z}_{]}=\mathrm{E}\left[e^{\boldsymbol{t}^{T} \boldsymbol{C} \boldsymbol{y}}\right]=M_{\boldsymbol{y}}\left(\boldsymbol{t}^{T} \boldsymbol{C}\right)=\exp \left(\boldsymbol{t}^{T}(\boldsymbol{C} \boldsymbol{\mu})+\frac{1}{2} \boldsymbol{t}^{T}\left(\boldsymbol{C} \Sigma \boldsymbol{C}^{T}\right) \boldsymbol{t}\right) .\right. \\
& \Rightarrow \quad \boldsymbol{x}=\boldsymbol{C} \boldsymbol{y} \sim \mathrm{N}_{p}\left(\boldsymbol{C} \boldsymbol{\mu}, \boldsymbol{C} \Sigma \boldsymbol{C}^{T}\right) .
\end{aligned}
$$

11. (\longrightarrow) If \boldsymbol{y}_{1} and \boldsymbol{y}_{2} are independent, then $\operatorname{Cov}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=0$, and

$$
\operatorname{Cov}(\boldsymbol{y})=\left[\begin{array}{cc}
\Sigma_{11} & 0 \\
0 & \Sigma_{22}
\end{array}\right]
$$

Therefore, $\Sigma_{12}=\Sigma_{21}^{T}=0$.
(\longleftarrow) If $\Sigma_{12}=\Sigma_{21}^{T}=0$, then the mgf for \boldsymbol{y} is

$$
m_{\boldsymbol{y}}(\boldsymbol{t})=\exp \left\{\boldsymbol{t}^{T} \boldsymbol{\mu}+\boldsymbol{t}^{T} \Sigma \boldsymbol{t} / 2\right\}=\exp \left\{\boldsymbol{t}_{1}^{T} \boldsymbol{\mu}_{1}+\boldsymbol{t}_{2}^{T} \boldsymbol{\mu}_{2}+\boldsymbol{t}_{1}^{T} \Sigma_{11} \boldsymbol{t}_{1} / 2++\boldsymbol{t}_{2}^{T} \Sigma_{22} \boldsymbol{t}_{2} / 2\right\} .
$$

That is, $m_{\boldsymbol{y}}(\boldsymbol{t})=m_{\boldsymbol{y}_{1}}\left(\boldsymbol{t}_{1}\right) \times m_{\boldsymbol{y}_{2}}\left(\boldsymbol{t}_{2}\right)$ implying independence between \boldsymbol{y}_{1} and \boldsymbol{y}_{2}.
12. Observe $[\bar{x}, \bar{y}]^{T}=\frac{1}{n} \sum Z_{i}$, that is, a linear combination of bivariate normal random variables.

$$
\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right] \sim N_{2}(\boldsymbol{\theta}, \Sigma / n)
$$

13. (a) Observe $\mathbf{1 1}^{T}=\boldsymbol{J}_{n \times n}$. So $\Sigma_{i i}=\sigma^{2}$ and $\Sigma_{i j}=\rho \sigma^{2}, i \neq j$.
(b) We can express

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} /\left[\sigma^{2}(1-\rho)\right]=\boldsymbol{y}^{T} \underbrace{\left\{\frac{1}{\sigma^{2}(1-\rho)}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{T}\right)\right\}}_{\boldsymbol{A}} \boldsymbol{y}
$$

We can show $\boldsymbol{A} \Sigma=\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{T}\right)$ is idempotent and $\operatorname{rank}(\boldsymbol{A} \Sigma)=n-1$. So $\sum_{i=1}^{n}\left(Y_{i}-\right.$ $\bar{Y})^{2} /\left[\sigma^{2}(1-\rho)\right] \sim \chi^{2}(n-1)$.
(c) We can show

$$
\bar{Y}=\underbrace{\frac{1}{n} \mathbf{1}^{T}}_{\boldsymbol{B}} \boldsymbol{y} \sim \mathrm{N}\left(\theta \mathbf{1}, \frac{\sigma^{2}(1-\rho-n \rho)}{n}\right) .
$$

We can easily check $\boldsymbol{A} \Sigma \boldsymbol{B}=0$ so from the result in class, \bar{Y} and $\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}$ are independent.
14. (a) $x_{2} \sim \mathrm{~N}\left(\mu_{2}, 1\right)$ and $x_{3} \sim \mathrm{~N}\left(\mu_{3}, 1\right)$
(b) From a result in the lecture (or in Monahan p.116),

$$
x_{1} \mid x_{2}, x_{3} \sim \mathrm{~N}\left(\mu_{1}+\frac{\rho}{1-\rho^{2}}\left(x_{2}-\mu_{2}\right)-\frac{\rho^{2}}{1-\rho^{2}}\left(x_{3}-\mu_{3}\right), 1-\frac{\rho^{2}}{1-\rho^{2}}\right)
$$

If $\rho=0, x_{1} \mid x_{2}, x_{3}$ is the same as the marginal of $x_{1}, \mathrm{~N}\left(\mu_{1}, 1\right)$.
(c)

$$
\begin{aligned}
\lambda & =\boldsymbol{A} \boldsymbol{x} \\
{\left[\begin{array}{l}
x_{1}+x_{2}+x_{3} \\
x_{1}-x_{2}-x_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

$\lambda_{1}=x_{1}+x_{2}+x_{3}$ and $\lambda_{2}=x_{1}-x_{2}-x_{3}$ are independently distributed if $\operatorname{Cov}\left(\lambda_{1}, \lambda_{2}\right)=0$.

$$
\begin{aligned}
\operatorname{Cov}(\lambda) & =\operatorname{Cov}(\boldsymbol{A} \boldsymbol{x}) \\
& =\boldsymbol{A} \operatorname{Cov}(\boldsymbol{x}) \boldsymbol{A}^{T} \\
& =\left[\begin{array}{cc}
3+4 \rho & -1-2 \rho \\
-1-2 \rho & 3
\end{array}\right]
\end{aligned}
$$

So $x_{1}+x_{2}+x_{3}$ and $x_{1}-x_{2}-x_{3}$ are uncorrelated when $\rho=-\frac{1}{2}$.
15.

$$
\boldsymbol{x} \sim \mathrm{N}_{3}(\mu, \boldsymbol{\Sigma})
$$

where

$$
\mu=\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right] \quad \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
10 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 12
\end{array}\right] .
$$

16. (a) This is a normal. Using a result in the lecture, we can find $x_{1} \mid x_{2}, x_{3} \sim \mathrm{~N}\left(\frac{1}{5}\left(3 x_{2}-x_{3}\right), \frac{17}{5}\right)$.
(b) Define $A=(4,-6,1)^{T}$. Then the shifted linear combination $4 x_{1}-6 x_{2}+x_{3}$ is distributed as $\mathrm{N}\left(0, A \Sigma A^{T}\right)$, and hence the linear combination we originally wanted is distributed as $\mathrm{N}\left(-18, A \Sigma A^{T}\right)$
17. (a) See result 5.15 (page 112 in Monahan's book). Observe that \boldsymbol{A} is idempotent with rank 2. Thus, $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / \sigma^{2} \sim \chi^{2}\left(2, \frac{1}{2 \sigma^{2}} \boldsymbol{m}^{T} \boldsymbol{A} \boldsymbol{m}\right)$.
(b) See result 5.16 (page 113 in Monahan's book). Observe that

$$
\boldsymbol{B} \boldsymbol{V} \boldsymbol{A}=\sigma^{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1
\end{array}\right] \neq \mathbf{0}
$$

So $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{B} \boldsymbol{y}$ are not independent.
(c) Let

$$
y_{1}+y_{2}+y_{3}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \boldsymbol{y}=\boldsymbol{C} \boldsymbol{y}
$$

Find that

$$
\boldsymbol{C} \boldsymbol{V} \boldsymbol{A}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

So $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$ and $y_{1}+y_{2}+y_{3}$ are independent.
18. (a)

$$
\mathbf{A} \mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-} \mathbf{X}^{\mathbf{T}} \mathbf{X}\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-} \mathbf{X}^{\mathbf{T}}=\mathbf{X}\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-} \mathbf{X}^{\mathbf{T}}=\mathbf{A}
$$

because $\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-} \mathbf{X}^{\mathbf{T}}$ is the generalized inverse of \mathbf{X}, and

$$
(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{A})=(\mathbf{I}-\mathbf{A})
$$

so \boldsymbol{A} and \mathbf{I} - A are idempotent.
The ranks of the matrices are:

$$
\begin{gathered}
\operatorname{rank}(\boldsymbol{A})=\operatorname{trace}(\boldsymbol{A})=p \\
\operatorname{rank}(\boldsymbol{I}-\boldsymbol{A})=\operatorname{trace}(\boldsymbol{I}-\boldsymbol{A})=n-p .
\end{gathered}
$$

(b)

$$
\begin{gathered}
\mathrm{E}\left(\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}\right)=\|\boldsymbol{X} \boldsymbol{b}\|^{2}+p \sigma^{2} \\
\mathrm{E}\left[\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y}\right]=(n-p) \sigma^{2}
\end{gathered}
$$

(c)

$$
\begin{aligned}
\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / \sigma^{2} & \sim \chi^{2}\left(p, \phi=\frac{1}{2 \sigma^{2}}(\boldsymbol{X} \boldsymbol{b})^{\mathbf{T}}(\boldsymbol{X} \boldsymbol{b})\right) \\
\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y} / \sigma^{2} & \sim \chi^{2}(n-p)
\end{aligned}
$$

(d) Ay and $(\mathbf{I}-\mathbf{A}) \mathbf{y}$ are independent since

$$
\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{I}-\boldsymbol{A}
\end{array}\right] \boldsymbol{y} \sim N_{2}\left(\left[\begin{array}{c}
\boldsymbol{X} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}-\mathbf{A}
\end{array}\right]\right)
$$

which implies $\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}=\|\mathbf{A y}\|^{2}$ and $\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y}=\|(\mathbf{I}-\mathbf{A}) \mathbf{y}\|^{2}$ are independent.
(e)

$$
\frac{\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} / p}{\boldsymbol{y}^{T}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{y} /(n-p)} \sim F\left(p, n-p, \phi=\frac{1}{2 \sigma^{2}}(\boldsymbol{X} \boldsymbol{b})^{\mathbf{2}}(\boldsymbol{X} \boldsymbol{b})\right)
$$

