AMS256 Homework 2

1. Consider the model

 $y_{i,j} = \mu + \alpha_i + \beta_i + \epsilon_{i,j}$ for i = 1, ..., a, and j = 1, ..., b,

- (a) Write X. What is the rank of X? What is the dimension of $\mathcal{N}(X)$?
- (b) Find $\boldsymbol{X}^T \boldsymbol{X}$. Show that

$$m{G} = egin{bmatrix} 1/(ab) & 0 & 0 \ -1/(ab) m{1}_a & 1/b m{I}_a & m{0} \ -1/(ab) m{1}_b & m{0} & 1/a m{I}_b \end{bmatrix}$$

is a generalized inverse of $\boldsymbol{X}^T \boldsymbol{X}$.

- (c) Assume that a = 3, b = 4. Show that $\boldsymbol{u}_1 = (1, -1, -1, -1, 0, 0, 0, 0)^T$ and $\boldsymbol{u}_2 = (1, 0, 0, 0, -1, -1, -1, -1)^T$ form a basis for $\mathcal{N}(\boldsymbol{X})$.
- 2. (Monahan) To evaluate a new curriculum in biology, two teachers each taught two classes using the old curriculum and three teachers taught two classes with the new. The responses, y_{ijk} is the average score for the class on the final. The data are:

			n_{ij}	y_{ij1}	y_{ij2}
i = 1(old)	j = 1	Dr. Able	2	100	80
	j = 2	Dr. Baker	2	80	80
i = 2(new)		Dr.Able			
	j=2	Dr. Brown	2	100	140
	j = 3	Dr. Charles	2	110	150

Consider a nested model;

$$y_{ijk} = \mu + \alpha_i + \beta_{ij} + \epsilon_{ijk},$$

with $E(\epsilon_{ijk}) = 0.$

- (a) Write this as a linear model of the form $y = X\beta + \epsilon$. What is r = rank(X)?
- (b) Write the normal equations and find all solutions.
- (c) Give a set of basis vectors for $\mathcal{N}(\mathbf{X})$.
- (d) Give a list of r linearly independent estimable functions, $\lambda^T \beta$ and give the LSE for each one.
- (e) Show that $\alpha_1 \alpha_2$ is not estimable.
- (f) For which of the following sets of parameter values β is the mean vector, $X\beta$ the same?

$$\begin{array}{rcl} \boldsymbol{\beta}_{1} &=& (100, 0, 0, 0, 0, 0, 0, 0)^{T} \\ \boldsymbol{\beta}_{2} &=& (90, 0, 10, 10, 0, 10, 20, 20)^{T} \\ \boldsymbol{\beta}_{3} &=& (50, 40, 30, 30, 10, 20, 20, 20)^{T} \\ \boldsymbol{\beta}_{4} &=& (80, 20, 10, 10, 0, 10, 20, 20)^{T} \\ \boldsymbol{\beta}_{5} &=& (90, 0, 20, 10, 0, 0, 10, 10)^{T} \end{array}$$

- (g) For the parameter vectors in (f) which give the same $X\beta$, show that the estimable functions you gave in (e) have values of $\lambda^T\beta$ that are the same.
- 3. Consider the regression model,

$$E(Y_i) = \beta_0 + \beta_1 x_i + \beta_2 (3x_i^2 - 2), \quad i = 1, 2, 3,$$

where $x_1 = -1$, $x_2 = 0$ and $x_3 = 1$. Find the LSEs of β_0 , β_1 and β_2 . Find the LSEs of β_0 and β_1 assuming that $\beta_2 = 0$.