AMS256 Homework 2

1. Consider the model

$$
y_{i, j}=\mu+\alpha_{i}+\beta_{i}+\epsilon_{i, j} \text { for } i=1, \ldots, a, \text { and } j=1, \ldots, b,
$$

(a) Write \boldsymbol{X}. What is the rank of \boldsymbol{X} ? What is the dimension of $\mathcal{N}(\boldsymbol{X})$?
(b) Find $\boldsymbol{X}^{T} \boldsymbol{X}$. Show that

$$
\boldsymbol{G}=\left[\begin{array}{ccc}
1 /(a b) & 0 & 0 \\
-1 /(a b) \mathbf{1}_{a} & 1 / b \boldsymbol{I}_{a} & \mathbf{0} \\
-1 /(a b) \mathbf{1}_{b} & \mathbf{0} & 1 / a \boldsymbol{I}_{b}
\end{array}\right]
$$

is a generalized inverse of $\boldsymbol{X}^{T} \boldsymbol{X}$.
(c) Assume that $a=3, b=4$. Show that $\boldsymbol{u}_{1}=(1,-1,-1,-1,0,0,0,0)^{T}$ and $\boldsymbol{u}_{2}=(1,0,0,0,-1,-1,-1,-1)^{T}$ form a basis for $\mathcal{N}(\boldsymbol{X})$.
2. (Monahan) To evaluate a new curriculum in biology, two teachers each taught two classes using the old curriculum and three teachers taught two classes with the new. The responses, $y_{i j k}$ is the average score for the class on the final. The data are:

			$n_{i j}$	$y_{i j 1}$	$y_{i j 2}$
$i=1$ (old)	$j=1$	Dr. Able	2	100	80
	$j=2$	Dr. Baker	2	80	80
$i=2$ (new)	$j=1$	Dr.Able	2	110	90
	$j=2$	Dr. Brown	2	100	140
	$j=3$	Dr. Charles	2	110	150

Consider a nested model;

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{i j}+\epsilon_{i j k},
$$

with $\mathrm{E}\left(\epsilon_{i j k}\right)=0$.
(a) Write this as a linear model of the form $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$. What is $r=\operatorname{rank}(\boldsymbol{X})$?
(b) Write the normal equations and find all solutions.
(c) Give a set of basis vectors for $\mathcal{N}(\boldsymbol{X})$.
(d) Give a list of r linearly independent estimable functions, $\boldsymbol{\lambda}^{T} \boldsymbol{\beta}$ and give the LSE for each one.
(e) Show that $\alpha_{1}-\alpha_{2}$ is not estimable.
(f) For which of the following sets of parameter values $\boldsymbol{\beta}$ is the mean vector, $\boldsymbol{X} \boldsymbol{\beta}$ the same?

$$
\begin{aligned}
& \boldsymbol{\beta}_{1}=(100,0,0,0,0,0,0,0)^{T} \\
& \boldsymbol{\beta}_{2}=(90,0,10,10,0,10,20,20)^{T} \\
& \boldsymbol{\beta}_{3}=(50,40,30,30,10,20,20,20)^{T} \\
& \boldsymbol{\beta}_{4}=(80,20,10,10,0,10,20,20)^{T} \\
& \boldsymbol{\beta}_{5}=(90,0,20,10,0,0,10,10)^{T}
\end{aligned}
$$

(g) For the parameter vectors in (f) which give the same $\boldsymbol{X} \boldsymbol{\beta}$, show that the estimable functions you gave in (e) have values of $\boldsymbol{\lambda}^{T} \boldsymbol{\beta}$ that are the same.
3. Consider the regression model,

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2}\left(3 x_{i}^{2}-2\right), \quad i=1,2,3,
$$

where $x_{1}=-1, x_{2}=0$ and $x_{3}=1$. Find the LSEs of β_{0}, β_{1} and β_{2}. Find the LSEs of β_{0} and β_{1} assuming that $\beta_{2}=0$.

