Recap: (change the office hours)

\[X^T X \beta = X^T y \] (N.E.s)

When \(X^T X \) is invertible we know \(\beta \) the solution to the N.E.s is
\[\hat{\beta} = (X^T X)^{-1} X^T y \]

\(X^T X \) is not invertible, there are infinitely many solutions. We want to characterize them.

Vector Space: \(\mathbb{C} \subseteq \mathbb{R}^n \) is a set of vectors such that if \(x, y \in S \), then \(\alpha x + \beta y \in S \) and \(0 \in S \).

Subspace: It is a subset of vector space and it is also a vector space.

\(\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \} \) is a vector space.

\(\mathcal{N} = \{ (x, y, 0) \mid x, y \in \mathbb{R} \} \) in a subspace of \(\mathbb{R}^3 \).

Any vector space is a subspace of itself, i.e., \(\mathbb{R}^3 \) in a subspace of \(\mathbb{R}^3 \).

If we take \(x_1, \ldots, x_k \in S \), define

\[M = \{ y \mid y = \sum c_i x_i, c_i \text{ coefficients} \} \]

\(M \) is called the space spanned by \(x_1, \ldots, x_k \).
The column space of a matrix A, denoted by $C(A)$, in the vector space spanned by the columns of the matrix A.

\[
A = \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\]

\[
C(A) = \left\{ \mathbf{c} \mid \mathbf{c} = \sum_{j=1}^{n} x_j \begin{bmatrix}
 a_{1j} \\
 \vdots \\
 a_{mj}
\end{bmatrix} \right\}, \text{ for coefficients } x_1, \ldots, x_n
\]

$C(A)$ consists of all possible linear combinations of the columns of A.

\[
\sum_{j=1}^{n} x_j \begin{bmatrix}
 a_{1j} \\
 \vdots \\
 a_{mj}
\end{bmatrix} = \begin{bmatrix}
 a_{11} x_1 + \cdots + a_{1n} x_n \\
 \vdots \\
 a_{m1} x_1 + \cdots + a_{mn} x_n
\end{bmatrix}
\]

\[
= A \mathbf{x}
\]

\[
\mathbf{x} = \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\]

$C(A) = \left\{ \mathbf{c} \mid A \mathbf{x} = \mathbf{c} \text{, for some } \mathbf{x} \right\}$

\[
3x_1: \quad A = \begin{bmatrix}
 1 & 0 \\
 1 & 2 \\
 0 & 0
\end{bmatrix} \quad C(A) = \left\{ \begin{pmatrix}
 a \\
 b
\end{pmatrix} \mid a, b \in \mathbb{R} \right\}
\]

\[
\begin{pmatrix}
 a \\
 b
\end{pmatrix} = \begin{bmatrix}
 1 & 0 \\
 1 & 2
\end{bmatrix} x_1 + \begin{bmatrix}
 0 & 1
\end{bmatrix} x_2 \quad (\text{there should be some } x_1, x_2 \text{ for which this holds})
\]
\[a = x_1 \quad \cdots \quad 0 \]
\[b = x_1 + 2x_2 \quad \cdots \quad 2 \]
\[\Rightarrow \quad x_1 = a, \quad x_2 = \frac{b-a}{2} \]

\[\exists \ x_1, x_2 \text{ (given as above), such that} \]

\[\begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ can be written as a linear combination of columns of } A. \]

\[\text{Out: } \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \in \text{C}(A). \]

Note the fact that \(X^p \in \text{C}(X) \)

\[
X^p = \begin{bmatrix}
\vdots & \vdots & \vdots \\
\tilde{x}_1 & \ldots & \tilde{x}_p \\
\vdots & \vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_p
\end{bmatrix}
= \begin{bmatrix}
\tilde{x}_1 \\
\vdots \\
\tilde{x}_p
\end{bmatrix} \beta_1 + \ldots + \begin{bmatrix}
\tilde{x}_1 \\
\vdots \\
\tilde{x}_p
\end{bmatrix} \beta_p
\]

When does an equation of the form \(A\vec{x} = \vec{c} \)

have a solution?

\(\vec{c} \in \text{C}(A) \)

If a system of equations has solution then that system is called consistent.

Recall the Normal equations

\[X^T X \beta = X^T y. \]

Is it a consistent system of equations?

\(X^T y \in \text{C}(X^T) \) and \(X^T X \beta \in \text{C}(X^T X) = \text{C}(X^T) \)

It can be shown that \(\text{C}(X^T) = \text{C}(X^T X) \)

\((3) \)
Linear dependence:

Let \(x_1, \ldots, x_n \) be vectors in \(S \). If there exists scalars \(\alpha_1, \ldots, \alpha_n \) not all zero so that

\[
\sum_{i=1}^{n} \alpha_i x_i = 0
\]

then \(x_1, \ldots, x_n \) are known as linearly dependent.

If \(\sum_{i=1}^{n} \alpha_i x_i = 0 \Rightarrow \alpha_1 = \cdots = \alpha_n = 0 \), then \(x_1, \ldots, x_n \) are called linearly independent.

Ex: Look at vectors \(\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \).

\[
\alpha_1 \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \alpha_2 \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) + \alpha_3 \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)
\]

\[\Rightarrow \alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0\]

So, these three vectors are linearly independent.

Ex: \(\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \). Are they linearly independent?

\[
\alpha_1 \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \alpha_2 \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) + \alpha_3 \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)
\]

\[\Rightarrow \alpha_1 = 0, \alpha_2 = 0, \alpha_3 - \alpha_2 = 0 \Rightarrow \alpha_3 = 0\]

Ex: \(x_1 = \left(\begin{array}{c} 1 \\ -1 \end{array} \right), \ x_2 = \left(\begin{array}{c} 1 \\ 2 \end{array} \right), \ x_3 = \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \).

\[
\alpha_1 \left(\begin{array}{c} 1 \\ -1 \end{array} \right) + \alpha_2 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \alpha_3 \left(\begin{array}{c} 2 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)
\]

\(\)
\[\begin{align*}
&= a_1 + a_2 + 2a_3 = 0 \quad \cdots \quad (1) \\
&= -a_1 + 2a_2 + a_3 = 0 \quad \cdots \quad (2)
\end{align*}\]

Consider \(a_1 = 1\), \(a_2 = 1\), \(a_3 = -1\). This is a solution to (1) & (2). Thus not all \(a_i\)'s are zero.

\[a_1 + a_2 = a_3 \implies a_1 + a_2 - a_3 = 0\]

Thus \(a_1, a_2, a_3\) are not linearly independent.

Basis: If \(M\) is a subspace of \(S\) and if \(\{x_1, \ldots, x_k\}\) is a linearly independent set of vectors which span \(M\) then \(\{x_1, \ldots, x_k\}\) is called a basis for \(M\).

Ex: \(\mathbb{R}^3\), \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\) are linearly independent and, the space spanned by \(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}\) in \(\mathbb{R}^3\). Take any \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3\). Clearly

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

\(\implies \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\) is a basis for \(\mathbb{R}^3\).

You can also check, \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\) in another basis of \(\mathbb{R}^3\).
Def: For any \(m \times n \) matrix \(A \), \text{rank} of the matrix \(A \), denoted by \(\text{rank}(A) \), is the number of linearly independent rows or columns of \(A \).

In a \(m \times n \) matrix \(A \) if \(\text{rank}(A) = n \), then we say that \(A \) has \(\text{the full row rank} \).

\(\bigcirc \) If \(\text{rank}(A) = n \) then we call that \(A \) has the full column rank.

We will see that in a linear regression we care about a design matrix \(X \) having the full column rank. We will see that if \(X \) has the full column rank, then the solution to the Normal Equations is unique.

Def: Let \(A \) be an \(m \times n \) matrix.

\(A \) is nonsingular if there exists a matrix \(A^{-1} \) such that \(A A^{-1} = A^{-1} A = I \).

If no such matrix exists then we call \(A \) a singular matrix.

\(A^{-1} \) is called the inverse of \(A \).

If \(\text{rank}(A) = n \) then \(A \) is nonsingular. If \(A \) is singular if \(\text{rank}(A) < n \).

Ex: \(A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 5 & 5 \\ -2 & 1 & 3 \end{pmatrix} \) the third column is the second column - first column.

the \(\text{rank}(A) < 3 \).
\[A = \begin{pmatrix} 1 & -2 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \Rightarrow \kappa(A) = 2 \Rightarrow A \text{ is invertible.} \]

Note the fact that \(\Box \)

Recall the linear regression model with \(p \) predictors and \(n \) observations:

\[y = X \beta + \epsilon \]

Here \(X \) is an \(n \times p \) matrix and \(y \) is an \(n \times 1 \) vector.

\(X^T X \) is a \(p \times p \) matrix.

\(\kappa(X^T X) = \) number of linearly independent columns of \(X^T X \)

\(\kappa(X^T X) = \) number of linearly independent columns of \(X \)

(as \(\kappa(X^T X) = \kappa(X^T) \) (we discussed earlier).

\(\kappa(X^T X) = \kappa(X) \Rightarrow \kappa(X) = p \Rightarrow \kappa(X^T X) \leq p \Rightarrow X^T X \text{ is invertible.} \)

\(\hat{\beta} = (X^T X)^{-1} X^T y \)

If all columns of \(X \) are not linearly independent, then \(\kappa(X^T X) < p \) and \(X^T X \) is not invertible.

\(\square \)
Example: $y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \ j = 1, \ldots, O3, \ i = 0, 1, \ldots, 3$

\[
\begin{align*}
 y_{11} &= \mu + \alpha_1 + \epsilon_{11} \\
 y_{12} &= \mu + \alpha_1 + \epsilon_{12} \\
 y_{13} &= \mu + \alpha_1 + \epsilon_{13} \\
 y_{14} &= \mu + \alpha_2 + \epsilon_{21} \\
 y_{22} &= \mu + \alpha_2 + \epsilon_{22} \\
 y_{23} &= \mu + \alpha_2 + \epsilon_{23} \\
 y_{31} &= \mu + \alpha_3 + \epsilon_{31} \\
 y_{32} &= \mu + \alpha_3 + \epsilon_{32} \\
 y_{33} &= \mu + \alpha_3 + \epsilon_{33}
\end{align*}
\]

\[\Rightarrow \quad y = \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 \mu \\
 \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{bmatrix} + \epsilon
\]

The first column is the sum of 2nd, 3rd, and 4th columns. Thus X does not have the full column rank.

However, in order to estimate parameters, we often put a restriction in one way ANOVA.

R puts $\alpha_1 + \alpha_2 + \alpha_3 = 0$ \[\alpha_3 = -\alpha_1 - \alpha_2\]

X becomes

\[\begin{bmatrix}
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0
\end{bmatrix}
\]
\[y = X^\top \beta + \varepsilon \]

\[\hat{\beta} = \left(\begin{array}{c} \mu \\ \alpha_1 \\ \alpha_2 \end{array} \right) \quad \alpha_3 = -\alpha_1 - \alpha_2 \]

\[X \mathbb{I} = \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ 1 & 0 & 1 & -1 \\ 1 & 0 & 1 & -1 \end{array} \right] \]

The standard linear regression equation is if \(X \) has full column rank, \(X^T X \) is invertible.

\[\hat{\beta} = (X^T X)^{-1} X^T y \]
height <- c(169.6, 166.8, 157.1, 181.1, 158.4, 165.6, 166.7, 155.6, 168.1, 165.3)
weight <- c(71.2, 58.2, 56.6, 64.5, 53.4, 56.8, 49.2, 55.6, 77.8)

###command

lm(weight~height)

###output

\[
y = \text{weight} \\
x = \text{height} \\
y = \beta_0 + \beta_1 x + e.
\]

Call:

\[\text{lm(formula = weight} \sim \text{height)}\]

Coefficients: parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-36.6097</td>
</tr>
<tr>
<td>weight</td>
<td>0.5808</td>
</tr>
</tbody>
</table>

###command

model.1 <- lm(weight~height)
anova(model.1)

###output

Analysis of Variance Table

Response: weight

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>height</td>
<td>1</td>
<td>164.96</td>
<td>164.961</td>
<td>2.3275</td>
<td>0.1656</td>
</tr>
</tbody>
</table>
Residuals 8.567.00 70.875

```r
# command
summary(model.1)
```

```r
# output

Call:
lm(formula = weight ~ height)

Residuals:
 Min  1Q Median  3Q  Max
-7.1687 -4.4384 -2.8973  0.5096 18.4055

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| (Intercept) | -36.6097 | 63.0342 | -0.581 0.577 |
| height     | 0.5808    | 0.3807 | 1.526 0.166 |

Residual standard error: 8.419 on 8 degrees of freedom
Multiple R-squared: 0.2254, Adjusted R-squared: 0.1285
F-statistic: 2.327 on 1 and 8 DF, p-value: 0.1656

```r
command
new = data.frame(height=c(170,180))
predict.lm(model.1,new,new=TRUE,interval="confidence",level=0.95)
```
## output

$f_{\text{fit}}$

<table>
<thead>
<tr>
<th>fit</th>
<th>lwr</th>
<th>upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.12420</td>
<td>54.79042</td>
</tr>
<tr>
<td>2</td>
<td>67.93208</td>
<td>53.74439</td>
</tr>
</tbody>
</table>

$\text{se.fit}$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.180296</td>
<td>6.152498</td>
</tr>
</tbody>
</table>

$\text{df}$

[1] 8

$\text{residual.scale}$

[1] 8.418732

### command

```r
plot(model.1$f_{\text{fit}}, weight-model.1$f_{\text{fit}}, xlab="fitted", ylab="residual",
 main="residual vs. fitted")
```

### command

```r
race <- c(1,0,0,1,0,0,0,0,0,0,0)
height <- c(169.6,166.8,157.1,181.1,158.4,165.6,166.7,155.6,168.1,165.3)
weight <- c(71.2,58.2,56,64.5,53,52.4,56.8,49.2,55.6,77.8)
```
model.2 <- lm(weight~height+race)
summary(model.2)

Call:
lm(formula = weight ~ height + race)

Residuals:
  Min  1Q Median   3Q  Max
-5.870 -4.712  -2.350  0.249  19.688

Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.2790    91.2199    0.069    0.947
height      0.3136     0.5595     0.560    0.593
race        6.5867     9.7814     0.673    0.522

Residual standard error: 8.722 on 7 degrees of freedom
Multiple R-squared: 0.2725,  Adjusted R-squared: 0.06464
F-statistic: 1.311 on 2 and 7 DF,  p-value: 0.3284