Take Home

May 31, 2017

Show all your work. You need to submit your report electronically to rguhaniy@ucsc.edu by 6/7/2017 11:59 PM. The report is limited to 8 pages. Attach your code and it will not be counted within the 8 page limit.

1. Consider the linear regression model

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\epsilon_{i}, \epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) .
$$

Use the following data. Please show your work. Do not use R package to run linear

y:	82	79	74	83	80	81	84	81
x_{1}	10	9	9	11	11	10	10	12
x_{2}	15	14	13	15	14	14	16	13

regression. Using R for simple algebra is okay.
(a) Provide the least square estimates of β_{1}, β_{2} and σ^{2}. (5 points)
(b) Provide 95% confidence intervals for β_{1} and $2 * \beta_{1}+\beta_{2}$. (10 points)
(c) Perform a $\alpha=0.01$ level test for $H_{0}: \beta_{2}=3$. (5 points)
(d) Find p-value for the test $H_{0}: \beta_{1}=\beta_{2}$. (5 points)
2. Consider the setting and the dataset in the previous question. Use the R package to run linear regression. Provide
(a) p -value for testing $\beta_{2}=0$. (5 points)
(b) Draw the joint confidence set for $\left(\beta_{1}, \beta_{2}\right)$. (10 points)
(c) Add an intercept to the model and check if predictor coefficients are significant. (10 points).
3. Consider a linear regression model given by

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

where $\boldsymbol{X}=\left[\mathbf{1}: \boldsymbol{x}_{1}: \boldsymbol{x}_{2}: \cdots: \boldsymbol{x}_{p}\right]$. Show that the model fitting statistic R^{2} for this model is simply the square of the correlations between observed and predicted values of y. (20 points)
4. Christensen presents mathematics ineptitude scores (Score $y_{i j k}$) for a group of $N=35$ students categorized by

- Major i $(1=$ Economics, $2=$ Anthroplology, and $3=$ Sociology $)$;
- High school background ("BG") $\mathrm{j}(1=$ Rural and $2=$ Urban $)$.

The output from fitting a 2-way ANOVA model with interaction is on the last page. The model is

$$
y_{i j k}=\mu+\alpha_{i}+\eta_{j}+\gamma_{i j}+\epsilon_{i j k}
$$

Also, you do not need to read the Section 7.2 (" 2 -way ANOVA with interaction"), but it might help just getting familiar with the model. While fitting the model we use the constraint $\alpha_{1}=\eta_{1}=0$. Also $\gamma_{i j}=0$ if $i=1$ or $j=1$.
(a) Which group of students has the lowest average score? (What is it?) Which group of students has the highest average score? (What is it?) (10 points)
(b) In the summary(.) output there is an F-statistic, $F=2.553$ with 5 and 29 degrees of freedom.
(i) What are the null and alternative hypotheses being tested? (5 points)
(ii) What conclusion would you make? (Please state in general terms that relate to the groups rather than parameters). (10 points)

Call:
$\operatorname{lm}(f o r m u l a=S c o r e 1 ~$ as.factor (Major) * as.factor (BG), data = dat)

Residuals:

Min	$1 Q$	Median	3Q	Max
-1.60236	-0.66773	-0.02406	0.52986	2.17744

Coefficients:

	Estimate	Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.8893	0.4033	2.205	0.03554
as.factor(Major)2	1.9860	0.6377	3.114	0.00413
as.factor(Major)3	1.1889	0.6377	1.864	0.07244
as.factor (BG) 2	1.2564	0.5207	2.413	0.02237
as.factor(Major)2:as.factor (BG)2	-1.6631	0.8233	-2.020	0.05270
as.factor(Major)3:as.factor (BG)2	-1.6130	0.8233	-1.959	0.05977

Signif. codes: $0 * * * 0.001$ ** $0.01 * 0.05$. $0.1 \quad 1$
Residual standard error: 0.988 on 29 degrees of freedom
Multiple R-squared: 0.3057,Adjusted R-squared: 0.1859
F-statistic: 2.553 on 5 and 29 DF, p-value: 0.04945
$>$
> \#\# Print the ANOVA Table \#
> anova(lm(Score1 ~ as.factor(Major)*as.factor(BG), data=dat))
Analysis of Variance Table

Response: Score1

| | Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| as.factor(Major) | 2 | 6.0755 | 3.03776 | 3.1123 | 0.05964 |
| as.factor(BG) | 1 | 0.8623 | 0.86233 | 0.8835 | 0.35502 |
| as.factor(Major): as.factor(BG) | 2 | 5.5228 | 2.76142 | 2.8291 | 0.07543. |
| Residuals | 29 | 28.3058 | 0.97606 | | |

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. $0.1 \quad 1$
>

